

VITOLIGNO 150-S

Holzvergaserkessel 17 bis 45 kW zur Verbrennung von Scheitholz

Planungsanleitung

VITOLIGNO 150-S Typ V15A

Holzvergaserkessel für Scheitholz bis 50 cm Länge

Inhaltsverzeichnis

Inhaltsverzeichnis

1.	Grundlagen der Verbrennung von	1. 1	Grundlagen der Verbrennung von Scheitholz zur Warmeerzeugung
	Holz		■ Maßeinheiten für Brennholz
			■ Energieinhalt und Emissionswerte
		4 0	■ Einfluss der Feuchte auf den Heizwert
		1. 2	Brennstoffe
		4 0	■ Norm
		1. 3	Bundes-Immissionsschutzverordnung in Deutschland (1. BImSchV)
			■ Inhalte der 1. BImSchV
			■ Novellierung der 1. BlmSchV - Verschärfung der Emissionsgrenzwerte
			■ Emissionsgrenzwerte für Staub und Kohlenmonoxid (CO) gemäß 1. BlmSchV
			Stufe 2 (§ 5)
2.	Vitaliano 150 C	2 1	Produktbeschreibung
۷.	Vitoligno 150-S	2. 1	S .
			■ Vorteile ■ Auslieferungszustand
		2 2	Technische Angaben
			Einbringung
		2. 0	■ Transport mit Hubwagen oder mit Kran
			■ Transport bei beengten Platzverhältnissen
			■ Transport bei beerigter in tatzvernatunssen ■ Transport mit Transport- und Einbringhilfe
			Transport fill transport und Embringfille
3.	Regelung	3 1	Technische Angaben Ecotronic 100
٠.			Zubehör Ecotronic 100
		J. Z	■ Temperaturregler
			■ Temperaturregler
			■ Hilfsschütz
			■ Puffertemperatursensor
		3 3	Zubehör zur Regelung von Heizkreisen und Trinkwassererwärmung
		0. 0	■ Vitotronic 200-H, Typ HK1B
			■ Vitotronic 200-H, Typ HK3B
			■ Tauchtemperatursensor
			= radontomporataroonoor
4.	Speicher-Wassererwärmer und	4 1	Übersicht der verwendbaren Speicher
٠.	Heizwasser-Pufferspeicher		Technische Angaben Vitocell 300-V, Typ EVIB-A+, EVIB-A, EVIA-A
	Tielzwasser i alierspeloner		Technische Angaben Vitocell 100-V, Typ CVA, CVAA, CVAB, CVAB-A
			Technische Angaben Vitocell 100-B, Typ CVB, CVBB, CVBC
			Technische Angaben Vitocell 100-U, Typ CVUD, CVUD-A
			Technische Angaben Vitocell 100-E, Typ SVPB
			Technische Angaben Vitocell 140-E, Typ SEIA, SEIC und 160-E, Typ SESB
			Technische Angaben Vitocell 320-M, Typ SVHA
			Technische Angaben Vitocell 340-M, Typ SVKC und 360-M, Typ SVSB
			Trinkwasserseitiger Anschluss Speicher-Wassererwärmer
		4.10	Thinkwasserseringer Anschluss Spelcher-Wassererwarmer
5.	Installationszubehör	5. 1	Zubehör zum Heizkessel
٥.	matanationszabenoi	J. 1	■ Transport- und Einbringhilfe
			Abgas-Partikelabscheider
			■ Abgas-Partikelabscheider
			■ Rücklauftemperaturanhebung
			■ Rucklautteriperaturalineburig
			■ Übergangseinheit
			■ Thermische Ablaufsicherung
			Anschlusseinheit Pufferspeicher
			Kleinverteiler
			■ Aschebox
			■ Divicon Heizkreis-Verteilung
		5 2	Zubehör für die Abgasabführung
		J. Z	Kesselanschluss-Stück
			■ Zugbegrenzer
			■ Nebenluftvorrichtung (Zugbegrenzer für Einbau in den Schornstein)
			■ Nebenluftvorrichtung (Zugbegrenzer für Einbau in das Verbindungsstück)
6	Planungshinwaisa	6 1	Aufstellung
6.	Planungshinweise	U. I	
			Mindestabstände Anforderungen an den Aufstellraum
			Anforderungen an den Aufstellraum
		6 2	■ Hinweise zur Aufstellung für Feuerstätten bis 50 kW
		0. 2	Richtwerte für die Wasserbeschaffenheit Heizungsanlagen mit bestimmungsgemäßen Betriebstemperaturen bis 100 °C
		6 2	(VDI 2035)Frostschutz
		U. 3	1 10360Hutz

Inhaltsverzeichnis (Fortsetzung)

		6. 4 Abgasseitiger	Anschluss	74
			l	
		Abgasrohr		75
		6. 5 Anschluss de	s Vitoligno 150-S und einem Öl-/Gas-Heizkessel an einen gen	neinsa-
		men Schorns	ein gemäß DIN 4759-1	75
		6. 6 Hydraulische	Einbindung	75
			spiele	
		•	echnische Ausrüstung nach EN 12828	
			ngelsicherung	
			Planungshinweise	
		_	wärmetauscher mit thermischer Ablaufsicherung	
			durch Heizwasser-Pufferspeicher	
		■ Leistungsa	uslegung Scheitholzkessel	77
			gemäße Verwendung	
7.	Anhang	7. 1 Auslegung A	sdehnungsgefäß	77
	•	0 0	spiel	
8.	Stichwortverzeichnis			79

Grundlagen der Verbrennung von Holz

1.1 Grundlagen der Verbrennung von Scheitholz zur Wärmeerzeugung

Maßeinheiten für Brennholz

Die in der Forst- und Holzwirtschaft üblichen Maßeinheiten für Brennholz sind der Festmeter (fm) und Raummeter (rm). Der Festmeter (fm) bezeichnet 1 m³ feste Holzmasse in Form von Rundholzsortimenten.

Der Raummeter (rm) ist die Maßeinheit für geschichtetes oder geschüttetes Holz, das einschließlich der Luftzwischenräume ein Gesamtvolumen von 1 m³ ergibt. 1 Festmeter Scheitholz entspricht durchschnittlich 1,4 Raummeter.

Umrechnungstabelle gebräuchlicher Brennholzsortimente

Maßeinheit	Festmeter (fm)	Raummeter (rm)	Raummeter (rm)	Schüttraummeter (srm)
Sortiment	Rundholz	Scheitholz	Stü	ickholz
			Geschichtet	Geschüttet
1 fm Rundholz	1	1,40	1,20	2,00
1 rm Scheitholz	0,70	1,00	0,80	1,40
1 m lang, geschichtet				
1 rm Stückholz	0,85	1,20	1,00	1,70
ofenfertig, geschichtet				
1 srm Stückholz	0,50	0,70	0,60	1,00
ofenfertig, geschüttet				

Energieinhalt und Emissionswerte

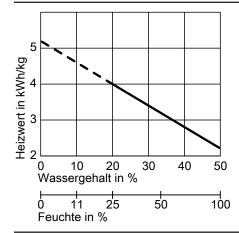
Holz ist ein nachwachsender Brennstoff. Bei der Verbrennung wird eine Energie von durchschnittlich 4,0 kWh/kg freigesetzt. In der Tabelle sind die Heizwerte verschiedener Holzarten bei einem Wassergehalt von 20 % aufgeführt.

Holzart	Dichte	Heizwert (caAngabe bei 20 % Wassergehalt)		
	kg/m³	kWh/ fm	kWh/ rm	kWh/kg
Nadelhölzer				
Fichte	430	2100	1500	4,0
Tanne	420	2200	1550	4,2
Kiefer	510	2600	1800	4,1
Lärche	545	2700	1900	4,0
Laubhölzer				
Birke	580	2900	2000	4,1
Ulme	620	3000	2100	3,9
Buche	650	3100	2200	3,8
Esche	650	3100	2200	3,8
Eiche	630	3100	2200	4,0
Weißbuche	720	3300	2300	3,7

1 I Heizöl kann somit unter Berücksichtigung der üblichen Wirkungsgrade durch 3 kg Holz ersetzt werden. Ein Raummeter (rm) Buchenholz entspricht der Energiemenge von ca. 200 I Heizöl oder 200 m³ Erdgas. Die Verbrennung von Holz trägt so dazu bei, die erschöpflichen Vorräte an Öl und Gas zu schonen.

Holz hat eine weitestgehend neutrale CO_2 -Bilanz, da das bei der Verbrennung entstehende CO_2 wieder unmittelbar in den Fotosynthese-Kreislauf eingebunden wird und zur Bildung neuer Biomasse beiträgt. Ein weiterer, aus Umweltgründen interessanter Gesichtspunkt ist, dass Holz fast keinen Schwefel enthält und deshalb bei der Verbrennung nahezu keine Schwefeldioxid-Emission entsteht.

Einfluss der Feuchte auf den Heizwert


Der Heizwert des Holzes wird wesentlich vom Wassergehalt bestimmt. Je mehr Wasser im Holz enthalten ist, desto geringer wird sein Heizwert, da das Wasser im Verlauf des Verbrennungsvorgangs verdampft und dabei Wärme verbraucht wird.

Zur Angabe des Wassergehalts sind 2 Größen gebräuchlich.

- Wassergehalt
 - Der Wassergehalt des Holzes ist die in Prozent angegebene Masse an Wasser bezogen auf die Gesamtmasse des Holzes.
- Holzfeuchtigkeit (Feuchte)

Die Holzfeuchtigkeit (im Weiteren als Feuchte bezeichnet) ist die in Prozent angegebene Masse an Wasser bezogen auf die Holzmasse ohne Wasser.

Das Diagramm zeigt den Zusammenhang zwischen dem Wassergehalt und der Feuchte, sowie die Abhängigkeit des Heizwerts.

Grundlagen der Verbrennung von Holz (Fortsetzung)

Waldfrisches Holz hat eine Feuchte von 100 %. Bei der Lagerung über einen Sommer reduziert sich die Feuchte auf ca. 40 %. Bei einer Lagerung über mehrere Jahre beträgt die Feuchte ca. 25 %. Das Diagramm zeigt die Abhängigkeit des Heizwerts vom Wassergehalt am Beispiel von Fichtenholz. Bei einem Wassergehalt von 20 % (Feuchte 25 %) beträgt der Heizwert 4,0 kWh/kg. Der Heizwert von über mehrere Jahre getrocknetem Holz ist etwa doppelt so hoch wie der von waldfrischem Holz.

Lagerung

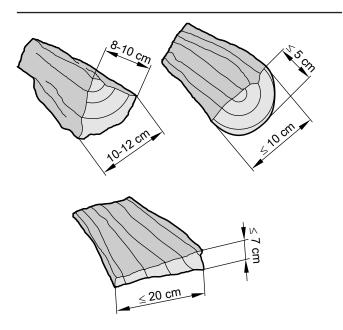
Die Verbrennung von feuchtem Holz ist nicht nur unwirtschaftlich, sondern führt durch niedrige Verbrennungstemperaturen auch zu hohen Schadstoff-Emissionen sowie zu Teerablagerungen im Schornstein.

Hinweise zur Lagerung von Holz:

- Rundhölzer ab 10 cm Durchmesser spalten.
- Scheitholz an einem belüfteten, möglichst sonnigen Ort regengeschützt aufschichten.
- Scheitholz mit reichlich Zwischenraum stapeln, damit durchströmende Luft die entweichende Feuchtigkeit mitnehmen kann.
- Unter dem Holzstapel muss ein Hohlraum, z. B. in Form von Lagerbalken sein, damit feuchte Luft abströmen kann.
- Frisches Holz nicht im Keller lagern, da zur Trocknung Luft und Sonne benötigt werden. Trockenes Holz kann dagegen in einem belüfteten Keller aufbewahrt werden.

1.2 Brennstoffe

Der Heizkessel ist nur für die Verbrennung von naturbelassenem, stückigem Scheitholz geeignet ("Stückholz" gemäß EN ISO 17225-5, Klasse B / D15 L50 M20). Die ideale Scheitlänge liegt zwischen 45 und 56 cm Länge. Es dürfen keine Brennstoffe wie Feinspäne, Sägemehl, Feinkohle, Koks, Hackschnitzel, Briketts und Waldabfälle verbrannt werden. Wenn kürzere Holzscheite verwendet werden, müssen diese ohne Hohlräume eingeschichtet werden. 25 cm lange Scheite können in Längsrichtung hintereinander eingelegt werden. Die Nenn-Wärmeleistung des Heizkessels wird nur mit trockenem Holz mit einem maximalen Wassergehalt von 20 % bzw. maximaler Feuchte von 25 % (luftgetrocknetes Holz) erreicht.


Bei Betrieb mit Weichholz wird zum Erreichen der gleichen Energiemenge ca. 44 % mehr (Volumen) benötigt als bei Betrieb mit Hartholz.

Hölzer minderer Qualität und höherer Feuchte reduzieren die Nenn-Wärmeleistung und die Brenndauer.

Wichtig für die Verbrennung ist die Verwendung von gespaltenem Holz. Das Spalten des Holzes – vorzugsweise direkt nach dem Einschlag – trägt entscheidend zur Verbesserung des Verbrennungsprozesses bei. Durch die Vergrößerung der Oberfläche wird eine einfachere und schnellere Ausgasung des Holzes ermöglicht. Zudem trocknet gespaltenes Holz schneller.

Norm

Gemäß der neuen Norm EN ISO 17225 für Biogene Brennstoffe wird im Teil 5 der Brennstoff "Stückholz" klassifiziert. Die bisherige Norm EN 14961-5:2011-09 wurde im September 2014 durch die EN ISO 17225:2014-09 ersetzt.

Empfohlene Scheitholzabmessungen

Grundlagen der Verbrennung von Holz (Fortsetzung)

1.3 Bundes-Immissionsschutzverordnung in Deutschland (1. BlmSchV)

Inhalte der 1. BlmSchV

In Deutschland wird in der Bundes-Immissionsschutzverordnung (1. BImSchV) Folgendes für kleinere und mittlere, nicht genehmigungsbedürftige Biomassefeuerungen geregelt:

- Unter welchen Bedingungen kleinere und mittlere Biomassefeuerungen aufgestellt und betrieben werden dürfen.
- Festlegung der Emissionsgrenzwerte von kleinen und mittleren Anlagen
- Wie oft und in welchem Umfang eine Anlage aus Immissionsschutzgründen überwacht werden muss.

Novellierung der 1. BlmSchV - Verschärfung der Emissionsgrenzwerte

Ab 22. März 2010 trat die Novellierung der 1. BlmSchV in Kraft mit folgenden wesentlichen, neuen Punkten:

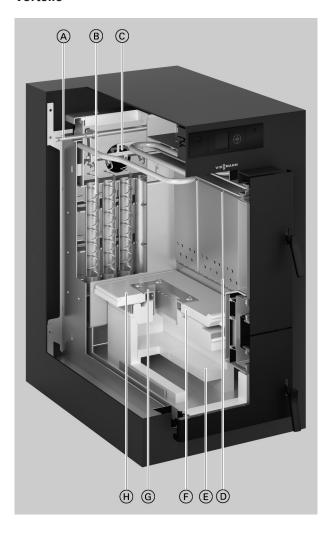
- Regelung der Emissionsgrenzwerte für Festbrennstoffkessel mit Nenn-Wärmeleistung 4 bis 1000 kW
- Nachweis der geforderten Emissionsgrenzwerte in wiederkehrenden Messungen vor Ort durch den Schornsteinfeger bei der Inbetriebnahme von Neuanlagen (wiederkehrende Prüfung alle 2 Jahre)
- Verschärfung der Emissionsgrenzwerte für Staub von 20 mg/m³ und für CO von 400 mg/m³ in der 1. BlmSchV 2. Stufe
- Emissionsgrenzwerte gelten nach einer Übergangsfrist auch für Altanlagen.
- Auslegung der Heizwasser-Pufferspeicher bei handbeschickten Anlagen: Min. 12 Liter je Liter Brennstoff-Füllraum oder 55 Liter/kW Nenn-Wärmeleistung des Heizkessels
- Auslegung der Heizwasser-Pufferspeicher bei automatisch beschickten Anlagen: Min. 20 Liter/kW Nenn-Wärmeleistung des Heizkessels
- Die oben genannten Angaben sind Minimalwerte. Der Heizwasser-Pufferspeicher ist entsprechend des Wärmebedarfs und der Trinkwassererwärmung auszulegen.

Emissionsgrenzwerte für Staub und Kohlenmonoxid (CO) gemäß 1. BlmSchV Stufe 2 (§ 5)

Hinweis

Emissionsgrenzwerte in wiederkehrenden Messungen vor Ort (bezogen auf 13 % Sauerstoff)

Brennstoff nach § 3,	Zeitpunkt der Er-	Nenn-Wärmeleis-	Staub	CO	Betroffene Fest-
Absatz 1	richtung bei Neuan-	tung	in mg/m³	in mg/m³	brennstoffkessel
	lagen	in kW			
Holzpellets	Ab 01. Jan. 2015	≥ 4 bis ≤ 1000	≤ 20	≤ 400	Vitoligno 300-C
Naturbelassenes, nicht stückiges Holz (Sägemehl, Späne und Schleifstaub), Holzbriketts	Ab 01. Jan. 2015	≥ 4 bis ≤ 1000	≤ 20	≤ 400	Vitoligno 250-S Vitoligno 300-S
Scheitholz	Ab 01. Jan. 2017	≥ 4 bis ≤ 1000	≤ 20	≤ 400	Vitoligno 150-S Vitoligno 200-S Vitoligno 250-S Vitoligno 300-S


Hinweis

Laut BImSchV ist kein Partikelabscheider erforderlich.

Vitoligno 150-S

2.1 Produktbeschreibung

Vorteile

- A Halbautomatische Wärmetauscherreinigung per Hebel
- (B) Wärmetauscherrohre
- © Drehzahlgeregeltes Abgasgebläse
- D Füllraumauskleidung mit Primärluftaustritt
- (E) Ausbrandkanal aus speziellem Feuerbeton
- (F) Sekundärluftaustritt im Brennraum
- (G) Brennerdüse aus Edelstahl
- H Brennraum aus speziellem Feuerbeton

Der Vitoligno 150-S ist ein besonders preisattraktiver Scheitholz-Vergaserkessel mit Nenn-Wärmeleistungen von 17 bis 45 kW. Er eignet sich für den bivalenten Betrieb in Ein- und Zweifamilienhäusern.

Die ideale Ergänzung zur Öl- und Gas-Heizung

Der kompakte Scheitholzkessel ist auch eine hervorragende Wärmeergänzung von bestehenden Öl- oder Gas-Heizungsanlagen. Dann übernimmt er im bivalenten Betrieb die Grundversorgung mit Heizwärme und Warmwasser. Erst bei extrem niedrigen Temperaturen wird der konventionelle Heizkessel zur Abdeckung der benötigten Spitzenlast zugeschaltet. Die Verbrennungsregelung mit Lambdasonde und Abgastemperatursensor erfasst den Sauerstoffgehalt und die Temperatur der Abgase. Sie sorgt für niedrige Emissionen und einen hohen Wirkungsgrad von bis zu 93,1 %. So verwandelt der Vitoligno 150-S das Scheitholz sparsam in nutzbare Wärme.

Minutenschnelles Anheizen

Mit der Anheizklappe wird der Anheizvorgang beschleunigt. Dabei wird der Schwelgaskanal vor dem Anzündvorgang geschlossen und erhöht so den Unterdruck im Holzkessel. Beim Schließen der Füllraumtür wird der Schwelgaskanal wieder geöffnet.

Heizen mit Komfort: Vitoligno 150-S

Der große Füllraum ermöglicht lange Nachlegeintervalle und eine Abbrandzeit von bis zu 4,5 Stunden. Der Vitoligno 150-S lässt sich mit Scheitholz bis 56 cm Länge beschicken. Die Schwelgasabsaugung sorgt für ein raucharmes Nachlegen von Scheitholz. Die Heizflächen lassen sich komfortabel seitlich durch einen Hebel reinigen. Aufgrund der Vergasertechnik und Verbrennungsregelung mit Lambdasonde erreicht der Vitoligno 150-S einen hohen Wirkungsgrad und eine saubere, effiziente Verbrennung mit sehr niedrigen Staubwerten. Der beidseitige Türanschlag ermöglicht eine optimale Raumnutzung und die Eckwandaufstellung im Aufstellraum.

Digitale Regelung Ecotronic 100

Die Regelung Ecotronic 100 überzeugt durch eine einfache und intuitive Bedienung. Auf dem hinterleuchteten Display werden alle Informationen durch Symbole dargestellt. Auch der Ladezustand des Heizwasser-Pufferspeichers wird über einen Balken symbolisch auf dem Display angezeigt.

Die Vorteile auf einen Blick

- Wirkungsgrad: Bis zu 93,1 %
- Schwelgasabsaugung für raucharmes Nachlegen
- Modulierender Betrieb mit optimaler Anpassung an den momentanen Wärmebedarf

- Einfache und intuitive Regelungsbedienung mit hinterleuchtetem Display
- Software-Update per SD-Karte
- Optimale Verbrennung durch Lambdasonden-Regelung
- Niedrige Staub-Emissionen durch saubere und effiziente Verbrennung
- Großer Füllraum ermöglicht lange Nachlegeintervalle und eine lange Brenndauer von bis zu 4,5 Stunden.
- Drehzahlgeregeltes Abgasgebläse mit Funktionsüberwachung für höchstmögliche Betriebssicherheit
- Halbautomatische Reinigung der Wärmetauscherrohre per Hebelmechanismus
- Gute Zugänglichkeit der Wartungsöffnungen für die bequeme Entaschung und Reinigung von vorn
- Beidseitiger Türanschlag ermöglicht optimale Raumnutzung und Eckwandaufstellung im Aufstellraum.
- Geringer Stromverbrauch spart Kosten.

Auslieferungszustand

Auslieferungszustand

Stahl-Heizkessel für Scheitholz

Kesselkörper mit folgenden Komponenten:

- Abgastemperatursensor
- Lambdasonde
- Kesseltemperatursensor
- Automatische Regelung der Luftklappen
- Türsicherheitsschalter für die Füllraumtür
- Sicherheitswärmetauscher
- Halbautomatische Wärmetauscherreinigung per Hebel
- Füllraumauskleidung

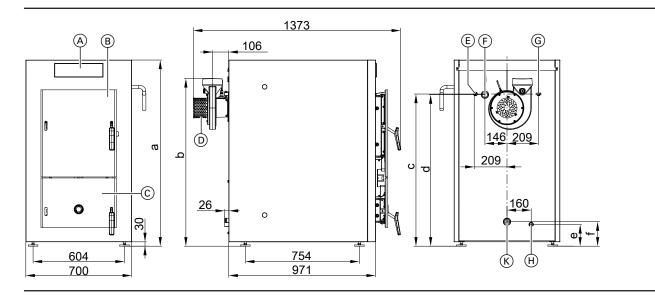
- 1 Karton mit Verkleidungsblechen und Wärmedämm-Matten
- 1 Karton mit Kesselkreisregelung Ecotronic 100
- 1 Karton mit Abgasgebläse
- 1 Tüte mit Technischen Unterlagen

Hinweis

Die thermische Ablaufsicherung und die Rücklauftemperaturanhebung sind nicht im Lieferumfang enthalten. Beide müssen separat bestellt werden: Siehe ab Seite 58.

2.2 Technische Angaben

Nenn-Wärmeleistung	kW	17	23	30	34,9	45
Min. Wärmeleistung (Q _{min})	kW	17	23	14,1	20,6	20,6
Vorlauftemperatur	LAA	17	23	14,1	20,0	20,0
Zulässig (Abschalttemperatur des Sicherheitstempe-	°C	95	95	95	95	95
raturbegrenzers)	C	95	95	95	95	93
Maximal (einstellbare Temperatur an der Regelung)	°C	85	85	85	85	85
- Minimal	°C	65	65	65	65	65
Mindestrücklauftemperatur		65	65	65	65	65
Zulässiger Betriebsdruck		00		00	- 00	
Heizkessel	bar	3	3	3	3	3
Tolzkossor	MPa	0.3	0,3	0.3	0.3	0,3
Sicherheitswärmetauscher	bar	3 bis 6	3 bis 6	3 bis 6	3 bis 6	3 bis 6
Cionemotowamictadocito	MPa	0,3 bis 0,6	0,3 bis 0,6	0,3 bis 0,6	0,3 bis 0,6	0,3 bis 0,6
Thermische Ablaufsicherung	I/h	800	800	800	800	800
Durchfluss bei min. 2,5 bar (0,25 MPa), max. 3,5 bar	7711		000	000	000	000
(0,35 MPa) und 15 °C Frischwassertemperatur						
CE-Kennzeichnung				CE		
Kesselklasse nach EN 303-5		5	5	5	5	5
Nennspannung	V~	<u> </u>		230	٠,	
Nennfrequenz	Hz			50		
Nennstrom	A~			6		
		24	38	54	34	20
Leistungsaufnahme (arithmetisches Mittel)	VV	34			-	38
Schutzart		IP20 gema	als EN 60529, (durch Aufbau/E	inbau zu gewä	nrieisten.
Schutzklasse				 	2700.4	
Wirkungsweise			Typ 1 E	3 gemäß EN 60	0730-1	
Zulässige Umgebungstemperatur				0.1.1		
– Betrieb	°C			0 bis +40		
Lagerung und Transport	°C	ļ		-20 bis +65		
Gesamtabmessungen						
Gesamtlänge	mm	1373	1373	1373	1415	1415
Gesamtbreite	mm	700	700	700	892	892
Gesamthöhe	mm	1230	1230	1390	1590	1590
Abmessungen Füllöffnung						
Breite	mm	380	380	380	476	476
Höhe	mm	351	351	421	521	521
Türöffnungswinkel		125°	125°	125°	125°	125°
Einbringmaße mit Transportschutz						
Länge	mm	1200	1200	1200	1300	1300
Breite	mm	700	700	700	800	800
Höhe	mm	1300	1300	1450	1640	1640
Einbringmaße ohne Türen und Verkleidungsbleche		4050	4050	4050	4000	1000
Länge	mm	1050	1050	1050	1090	1090
Breite	mm	630	630	630	730	730
Höhe	mm	1100	1100	1269	1470	1470
Gesamtgewicht	kg	502	502	595	715	715
Kesselkörper mit Verkleidungsblechen		110	110			
Einbringgewicht Kesselkörper	kg	418	418	505	594	594
ohne Verkleidungsbleche und Türen						
Inhalt				440		
Kesselwasser	!	93	93	110	165	165
Brennstoff-Füllraum		79	79	120	180	180
Anschlüsse Heizkessel	_					
Kesselvorlauf und -rücklauf (Außengewinde)	G	11/2	1½	1½	1½	1½
Entleerung	R	3/4	3/4	3/4	3/4	3/4
Anschlüsse Sicherheitswärmetauscher	_					
Kaltwasser, Warmwasser	R	1/2	1/2	1/2	1/2	1/2
Heizwasserseitiger Durchflusswiderstand						
– Bei ΔT = 20 K	mbar	0,9	0,9	3,4	9	9
	Pa	90	90	340	900	900
– Bei ΔT = 10 K	mbar	6,0	6,0	19,5	41	41
	Pa	600	600	1950	4100	4100


Nenn-Wärmeleistung	kW	17	23	30	34,9	45
Abgas ^{*1}						
(bei Nenn-Wärmeleistung)						
 Mittlere Temperatur (brutto*2) 	°C	160	160	160	160	160
- Massestrom	kg/h	40	50	65	79	101
 CO₂-Gehalt im Abgas 	%	14	14	14	14	14
Brenndauer bei Nennleistung	h	4	4	4,5	4,5	4,5
Abgasanschluss	Ø mm	130	130	150	150	150
Erforderlicher Förderdruck bei Voll-Last (Zugbedarf)	mbar	0,08	0,08	0,08	0,08	0,08
	Pa	8	8	8	8	8
Max. zulässiger Förderdruck*3	mbar	0,15	0,15	0,15	0,15	0,15
-	Pa	15	15	15	15	15
Empfohlenes min. Volumen Heizwasser-Pufferspei-	1	935	1265	1650	1920	2475
cher						
Wirkungsgrad						
Bei Nennlast	%	92,7	92,5	93,1	91,9	91,6
– Bei Teillast	%	_	_	94,1	92,9	92,9
Energieeffizienzklasse		A+	A+	A+	A+	A+

Volumen Heizwasser-Pufferspeicher

Für die genaue Auslegung: Siehe "Dimensionierung Heizwasser-

Pufferspeicher"

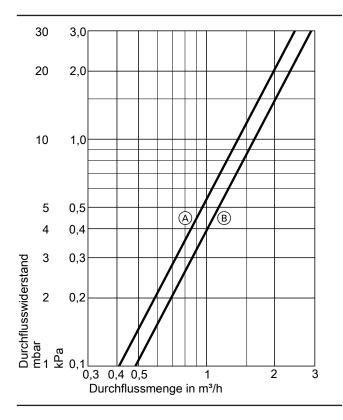
Abmessungen

- $\begin{pmatrix} A \\ B \end{pmatrix}$ Kesselkreisregelung
- Fülltür
- 000 Aschetür
- Abgasgebläse

- $\stackrel{\textstyle (}{\mathbb{E}}$ Kaltwasserzulauf für thermische Ablaufsicherung R $\frac{1}{2}$
- F Kesselvorlauf G 11/2
- Warmwasseraustritt für thermische Ablaufsicherung R 1/2
- \oplus Entleerung R ¾
- Kesselrücklauf G 11/2

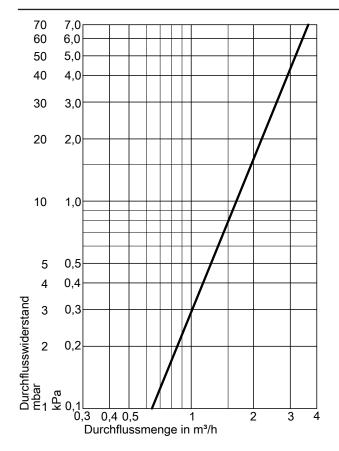
Maßtahelle

Wastabelle						
Nenn-Wärmeleistung	kW	17	23	30	34,9	45
a	mm	1230	1230	1390	1590	1590
b	mm	1110	1110	1269	1470	1470
С	mm	1008	1008	1175	1385	1385
d	mm	1003	1003	1173	1380	1380
е	mm	145	145	145	167	167
f	mm	163	163	163	182	182


^{*1} Rechenwerte zur Auslegung der Abgasanlage nach EN 13384 bezogen auf 10,0 % CO₂.

^{*2} Gemessene Abgastemperatur bei 20 °C Verbrennungslufttemperatur entsprechend EN 304.

^{*3} Bei Schornsteinen mit einem Förderdruck (Schornsteinzug) über 0,15 mbar (15 Pa) muss eine Nebenluftvorrichtung (Zugbegrenzer) ein-


Heizwasserseitiger Durchflusswiderstand

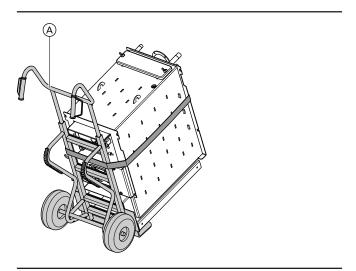
Heizkessel mit 17 bis 30 kW

- (A) Heizkessel 17 und 23 kW
- B Heizkessel 30 kW

Heizkessel mit 34,9 und 45 kW

2.3 Einbringung

Transport mit Hubwagen oder mit Kran


Der Heizkessel kann mit Hilfe eines Hubwagens transportiert werden, falls es die Platzverhältnisse zulassen. Der Hubwagen wird von der Vorderseite des Kessels unter den erhöhten Stahlsockel eingeschoben. Zusätzlich befindet sich oben am Kesselkörper eine Transportöse für den Transport mit einem Kran.

Transport bei beengten Platzverhältnissen

Bei beengten Platzverhältnissen kann der Holzverschlag entfernt und der Heizkessel von der Palette genommen werden. Zusätzlich können die Türen abgebaut werden.

VITOLIGNO 150-S

Transport mit Transport- und Einbringhilfe

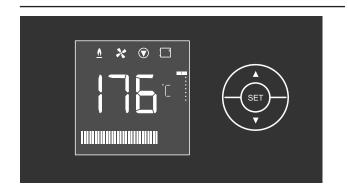
Die als Zubehör lieferbare Transport- und Einbringhilfe $\stackrel{\frown}{\mathbb{A}}$ ist für den Flurtransport und den Transport über Treppen geeignet. Für den Transport über Treppen sind 3 bis 4 Personen erforderlich. Bei Verwendung der Transport- und Einbringhilfe sind die Türen des Heizkessels grundsätzlich abzubauen. Der Heizkessel muss mit einem Spanngurt an der Transport- und Einbringhilfe gesichert wer-

Regelung

3.1 Technische Angaben Ecotronic 100

Beschreibung

Elektronische Kesselkreisregelung mit Lambdasonde zur automatischen Regelung der Luftzuführung


Auf dem hinterleuchtetem Display werden alle Informationen durch Symbole dargestellt. Auch der Ladezustand des Heizwasser-Pufferspeichers wird über einen Balken symbolisch auf dem Display angezeigt. Zur Regelung von Heizkreisen und zur Trinkwassererwärmung ist die witterungsgeführte Heizkreisregelung Vitotronic 200-H erforderlich

Aufbau und Funktion

Aufbau

Die Regelung Ecotronic 100 besteht aus einer im Heizkessel integrierten Leiterplatte und der im Heizkessel integrierten Bedieneinheit (Display). Ein Hall-Sensor zur Regelung der Drehzahl des Abgasgebläses, ein Kesseltemperatursensor Pt1000, eine Lambdasonde, ein Abgastemperatursensor Pt1000, ein Sensor zur Überwachung der Feuerraumtür und ein Sicherheitstemperaturbegrenzer sind Bestandteil der Regelung. Puffertemperatursensoren zur Erfassung der Temperaturen im Heizwasser-Pufferspeicher sind als Zubehör erhältlich.

Display

Bedieneinheit

Das Display besteht aus einer 3 x 7-Segmentanzeige mit zusätzlicher Indexanzeige. Über eine Navigationstaste erfolgt die Bewegung in den Menüs und die Veränderung von Parametern:

- Anzeige der Kesselwassertemperatur, Betriebs- und Störungsanzeige
- Anzeige für Anheizbetrieb und Brennstoff nachlegen

- Schornsteinfeger-Prüffunktion zur Unterstützung der Messung
- Anzeige für Gebläsefunktion
- Anzeige des Temperaturbegrenzers
- Anzeige des Ladezustands des Heizwasser-Pufferspeichers über einen Balken

Funktionen

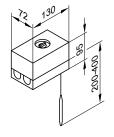
- Stetig regelnde Luftklappen optimieren den Anheiz- und Ausbrandvorgang.
- Lambdasonde ermöglicht eine effiziente Verbrennungsregelung und höchste Wirkungsgrade.
- Elektronische Maximal- und Minimaltemperaturbegrenzung
- Gebläsesteuerung mit Drehzahlregelung
- Integriertes Diagnosesystem
- Freigabe eines 2. Wärmeerzeugers

Einstellung des Sicherheitstemperaturbegrenzers: 95 °C Elektronische Maximaltemperaturbegrenzung: 85 °C

Software

Eventuell erforderliche Softwareaktualisierung ist per SD-Karte mit einem speziellem Adapter (Dongle) möglich.

Technische Daten Ecotronic 100


Nennspannung	230 V ~
Nennfrequenz	50 Hz
Nennstrom	4 A
Leistungsaufnahme	6 W (arithmetisches Mittel)
Schutzklasse	I
Schutzart	IP20 D gemäß EN 60529
	durch Aufbau/Einbau zu
	gewährleisten
Wirkungsweise	Typ 1B gemäß EN 60730-1
Zulässige Umgebungstemperatur	
Betrieb	0 bis +40 °C
	Verwendung in Wohn- und
	Heizräumen (normale Um-
	gebungsbedingungen)
 Lagerung und Transport 	−20 bis +65 °C
Nennbelastbarkeit der Relaisausgänge	
29 Kesselkreispumpe	2(1) A, 230 V~ 2(1) A, 230 V~
100 Abgasgebläse	2(1) A, 230 V~

3.2 Zubehör Ecotronic 100

Temperaturregler

Best.-Nr. 7151988

- Mit einem thermostatischen System
- Mit Einstellknopf außen am Gehäuse
- Ohne Tauchhülse
 Geeignet für Tauchhülse Best.-Nr. 7819693
 Bei Viessmann Speicher-Wassererwärmern ist die Tauchhülse im Lieferumfang enthalten.

Regelung (Fortsetzung)

Technische Daten

Anschluss	3-adrige Leitung mit einem Leiterquer-		
	schnitt von 1,5 mm ²		
Schutzart	IP 41 gemäß EN 60529		
Einstellbereich	30 bis 60 °C, umstellbar bis 110 °C		
Schaltdifferenz	max. 11 K		
Schaltleistung	6(1,5) A 250 V~		

Schaltfunktion	Bei steigender Temperatur von 2 auf 3
DIN RegNr.	DIN TR 1168

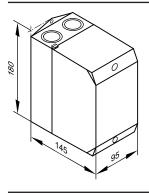
Temperaturregler

Best.-Nr. 7151989

- Mit einem thermostatischen System
- Mit Einstellknopf außen am Gehäuse
- Ohne Tauchhülse
- Mit Hutschiene zum Anbau an den Speicher-Wassererwärmer oder an die Wand

Technische Daten

recillistile Dateil	
Anschluss	3-adrige Leitung mit einem Leiterquer-
	schnitt von 1,5 mm ²
Schutzart	IP41 gemäß EN 60529
Einstellbereich	30 bis 60 °C, umstellbar bis 110 °C
Schaltdifferenz	max. 11 K
Schaltleistung	6 (1,5) A 250 V~
Schaltfunktion	Bei steigender Temperatur von 2 auf 3
	3 0 2 9 ++ 0 ₁
DIN-Registernummer	DIN TR 1168


Hilfsschütz

Best.-Nr. 7814681

- Schaltschütz im Kleingehäuse
- Mit 4 Öffnern und 4 Schließern
- Mit Reihenklemmen für Schutzleiter

recnn	scne	Daten
Snulen	snanr	nuna

Spulenspannung	230 V/50 Hz
Nennstrom (I _{th})	AC1 16 A
	AC3 9 A

Puffertemperatursensor

Best.-Nr. ZK01320

3 Puffertemperatursensoren für den Betrieb mit Heizwasser-Puffer-

. Mit Anschlussleitung zur Erfassung der Temperaturen im Heizwasser-Pufferspeicher

Technische Daten

Leitungslänge	5 m, steckerfertig
Schutzart	IP 60 gemäß EN 60529, durch Aufbau/Einbau zu gewährleisten.
	•
Sensortyp	Viessmann Pt1000
Zulässige Umgebungstemperatur	
- Betrieb	0 bis +90 °C
 Lagerung und Transport 	−20 bis +70 °C

Regelung (Fortsetzung)

3.3 Zubehör zur Regelung von Heizkreisen und Trinkwassererwärmung

Vitotronic 200-H, Typ HK1B

Best.-Nr. Z009462

Witterungsgeführte Heizkreisregelung für Wandmontage

■ Für 1 Heizkreis mit Mischer und Speichertemperaturregelung

Lieferumfang:

- Vitotronic 200-H, Typ HK1B
- Außentemperatursensor
- Konsole für Wandmontage

Hinweis

Zur separaten Heizkreis- und Speichertemperaturregelung ohne Kommunikationsverbindung zu Ecotronic 100.

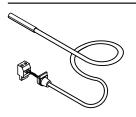
Vitotronic 200-H, Typ HK3B

Best.-Nr. Z009463

Witterungsgeführte Heizkreisregelung für Wandmontage

■ Für 3 Heizkreise mit Mischer und Speichertemperaturregelung

- Vitotronic 200-H, Typ HK3B
- Außentemperatursensor
- Konsole für Wandmontage


Hinweis

Zur separaten Heizkreis- und Speichertemperaturregelung ohne Kommunikationsverbindung zu Ecotronic 100.

Tauchtemperatursensor

Best.-Nr. 7438702

Zur Erfassung einer Temperatur in einer Tauchhülse

Technische Daten

Leitungslänge	5,8 m, steckerfertig		
Schutzart	IP32 gemäß EN 60529 durch Aufbau/		
	Einbau gewährleisten.		
Sensortyp	Viessmann NTC 10 kΩ, bei 25 °C		
Zulässige Umgebungstemperatur			

	0 bis +90 °C
 Lagerung und Transport 	−20 bis +70 °C

Speicher-Wassererwärmer und Heizwasser-Pufferspeicher

4.1 Übersicht der verwendbaren Speicher

Gerät	Verwendung	
Speicher-Wassererwärmer		
Vitocell 300-V, Typ EVIB-A+, EVIB-A, EVIA-A	Zur Trinkwassererwärmung in Verbindung mit Heizkesseln, Fernheizungen und Niedertemperatur-Heizsystemen, wahlweise mit Elektrobeheizung, innenbeheizt	Seite 17
Vitocell 100-V, Typ CVA, CVAA, CVAB, CVAB-A	Zur Trinkwassererwärmung in Verbindung mit Heizkesseln, Fernheizungen, wahlweise mit Elektrobeheizung bei 300 und 500 l Inhalt	Seite 22
Vitocell 100-B, Typ CVB, CVBB, CVBC	Zur Trinkwassererwärmung in Verbindung mit Heizkesseln und Sonnenkollektoren für bivalenten Betrieb	Seite 27
Vitocell 100-U, Typ CVUD, CVUD-A	Zur Trinkwassererwärmung in Verbindung mit Heizkesseln und Sonnenkollektoren für bivalenten Betrieb	Seite 34
Heizwasser-Pufferspeicher		
Vitocell 100-E, Typ SVPB	Zur Heizwasserspeicherung in Verbindung mit Sonnenkollektoren, Wärmepumpen, Festbrennstoffkesseln und Wärmerückgewinnung	Seite 38
Vitocell 140-E, Typ SEIA, SEIC	Zur Heizungsunterstützung in Verbindung mit Sonnenkollektoren, Wärmepumpen, Öl-/Gas-Heizkesseln, Festbrennstoffkesseln und/ oder Elektrobeheizung mit Elektro-Heizeinsatz	Seite 41
Vitocell 160-E, Typ SESB	Zur Heizungsunterstützung in Verbindung mit Sonnenkollektoren, Wärmepumpen, Öl-/Gas-Heizkesseln, Festbrennstoffkesseln und/oder Elektrobeheizung mit Elektro-Heizeinsatz. Mit Schichtladeeinrichtung für die Solarwärme	Seite 41
Heizwasser-Pufferspeicher mit integrie		
Vitocell 320-M, Typ SVHA	Zur Heizwasserspeicherung und Trinkwassererwärmung in Verbindung mit Mikro-KWK und Festbrennstoffkesseln	Seite 46
Vitocell 340-M, Typ SVKC	Zur Heizwasserspeicherung und Trinkwassererwärmung in Verbindung mit Sonnenkollektoren, Wärmepumpen und Festbrennstoffkesseln	Seite 51
Vitocell 360-M, Typ SVSB	Zur Heizwasserspeicherung und Trinkwassererwärmung in Verbindung mit Sonnenkollektoren, Wärmepumpen und Festbrennstoffkesseln	Seite 51

4.2 Technische Angaben Vitocell 300-V, Typ EVIB-A+, EVIB-A, EVIA-A

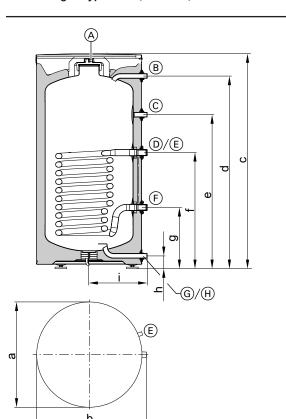
Hinweis zur Dauerleistung

Bei der Planung mit der angegebenen oder ermittelten Dauerleistung die entsprechende Umwälzpumpe einplanen. Nur falls die Nenn-Wärmeleistung des Wärmeerzeugers ≥ der Dauerleistung ist, wird die angegebene Dauerleistung erreicht.

Dimensionierung von Einbringungsöffnungen

Die tatsächlichen Abmessungen des Speicher-Wassererwärmers können aufgrund von Fertigungstoleranzen geringfügig abweichen.

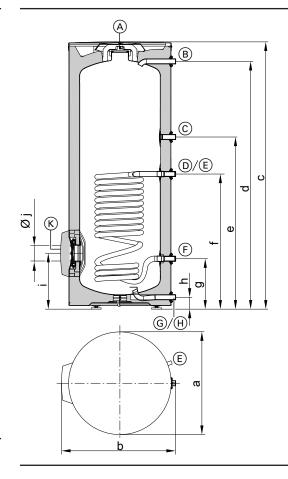
Technis	sche	Daten
1 CCI II II I	30110	Dateii


Тур		EVIB			EVIB-A		EVIA-A
Speicherinhalt	I	160	200	160	200	300	500
(AT: Tatsächlicher Wasserinhalt)							
Heizwasserinhalt	<u> </u>	7,		7,		11,0	12,9
Bruttovolumen	I	167,4	207,4	167,4	207,4 71-10MC/E	311,0	512,9
DIN-Registernummer				900	/1-10IVIC/E	=	
Dauerleistung bei unten aufgeführtem Heizwasser-Volumenstrom							
 Bei Trinkwassererwärmung von 10 auf 45 °C und folgenden 							
Heizwasser-Vorlauftemperaturen							
90 °C	kW	46	3	4	6	61	69
	l/h	112	27	11:	27	1501	1688
80 °C	kW	38	3	3	8	51	58
	l/h	93		93		1252	1414
70 °C	kW	30		3		41	46
	I/h	74		74		998	1128
60 °C	kW	22	- 1	2		30	34
	I/h	54		54		733	830
50 °C		13 32		1 32		18 434	20 491
- Bei Trinkwassererwärmung von 10 auf 60 °C und folgenden	I/h	32	۷ .	32		434	49
Heizwasser-Vorlauftemperaturen							
90 °C	kW	39	9	3	9	52	59
	l/h	66		66		894	1011
80 °C	kW	3.	1	3	1	41	46
	l/h	52	7	52	27	706	799
70 °C	kW	22	2	2		29	33
	I/h	37		37		501	568
Heizwasser-Volumenstrom für die angegebenen Dauerleistu	n- m ³ /h	3,	0	3,	0	3,0	3,0
gen		2 = 4 1		0.00		4.40	
Bereitschaftswärmeaufwand	kWh/24 h	0,71	0,75	0,98	1,04	1,18	1,37
Zulässige Temperaturen							
- Heizwasserseitig	°C	160	160	160	160	160	160
- Trinkwasserseitig	°C	95	95	95	95	95	95
Zulässiger Betriebsdruck							
- Heizwasserseitig	bar	10	10	10	10	10	10
	MPa	1	1	1	1	1	1
- Trinkwasserseitig	bar	10	10	10	10	10	10
-	MPa	1	1	1	1	1	1
Abmessungen							
Länge a (∅) – Mit Wärmedämmung	mm	634	634	634	634	668	1022
Ohne Wärmedämmung	mm	034	- 034	- 034	- 034		715
Breite b							7 10
- Mit Wärmedämmung	mm	661	661	661	661	706	1084
- Ohne Wärmedämmung	mm	_	_	_	_	_	954
Höhe c							
 Mit Wärmedämmung 	mm	1190	1410	1190	1410	1740	1852
– Ohne Wärmedämmung	mm	-	-	-	-	-	1667
Kippmaß		1000	4500	4000	4500	4040	
Mit Wärmedämmung Ohne Wärmedämmung	mm	1323	1520	1323	1520	1840	1600
Ohne Wärmedämmung Gesamtgewicht mit Wärmedämmung	ka	57	— 65	<u> </u>	— 65	92	1690 110
Heizfläche	kg m²	1,		1,		1,5	1,7
Anschlüsse (Außengewinde)	1117	1,	·	1,		1,5	1,7
Heizwasservorlauf und -rücklauf	R		1		1	1	1
Kaltwasser, Warmwasser	R		3/4		3/4	1	11/2
		1	3/4		3/4		17.

5784189

VIESMANN

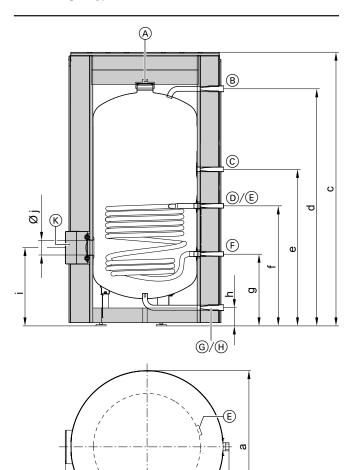
Тур	EVI	B-A+		EVIB-A		EVIA-A
Speicherinhalt	160	200	160	200	300	500
(AT: Tatsächlicher Wasserinhalt)						
Energieeffizienzklasse	P	+	1	Ä	Α	A
Farbe Vitocell 300-V						
Vitosilber	X	X	X	X	X	X
 Vitopearlwhite 	-	_	-	_	_	X
 Vitographite 	-	_	X	X	_	_
Farbe Vitocell 300-W						
 Vitopearlwhite 	X	X	X	X	X	_


Abmessungen Typ EVIB-A, EVIB-A+, 160 und 200 I Inhalt

- (A) Besichtigungs- und Reinigungsöffnung
- B Warmwasser
- © Zirkulation
- (D) Heizwasservorlauf
- (E) Klemmsystem zur Befestigung von Tauchtemperatursensoren am Speichermantel jeweils mit Aufnahmen für 3 Tauchtemperatursensoren
- Heizwasserrücklauf
- (G) Kaltwasser
- \oplus Entleerung

Maße Typ EVIB-A, EVIB-A+					
Speicherinhalt	I	160	200		
а	mm	634	634		
b	mm	661	661		
С	mm	1190	1410		
d	mm	1062	1282		
е	mm	850	892		
f	mm	642	642		
g	mm	342	342		
h	mm	77	77		
<u>i</u>	mm	344	344		

Abmessungen Typ EVIB-A, 300 I Inhalt



- (A) Besichtigungs- und Reinigungsöffnung
- $\widecheck{\mathbb{B}}$ Warmwasser
- (C) Zirkulation
- (D) Heizwasservorlauf
- Klemmsystem zur Befestigung von Tauchtemperatursensoren am Speichermantel jeweils mit Aufnahmen für 3 Tauchtemperatursensoren
- Heizwasserrücklauf
- (G) Kaltwasser
- (H)Entleerung
- K Zusätzliche Reinigungsöffnung und Elektro-Heizeinsatz

Maße Typ EVIB-A

Speicherinhalt	I	300
a	mm	668
b	mm	706
С	mm	1740
d	mm	1606
е	mm	1116
f	mm	876
g	mm	327
h	mm	77
İ	mm	362
j	mm	100

Abmessungen Typ EVIA-A, 500 I Inhalt

- © Zirkulation
 D Heizwasservorlauf
- E Klemmsystem zur Befestigung von Tauchtemperatursensoren am Speichermantel jeweils mit Aufnahmen für 3 Tauchtemperatursensoren
- Heizwasserrücklauf
- G Kaltwasser
- H Entleerung
- K Zusätzliche Reinigungsöffnung und Elektro-Heizeinsatz

Maße Typ E	EVIA-A
------------	--------

Maise Typ EVIA-A					
Speicherinhalt	I	500			
a	mm	1022			
b	mm	1084			
С	mm	1852			
d	mm	1625			
е	mm	1073			
f	mm	823			
g	mm	494			
h	mm	126			
İ	mm	508			
j	mm	100			

- (A) Besichtigungs- und Reinigungsöffnung
- (B) Warmwasser

Leistungskennzahl N_L nach DIN 4708, obere Heizwendel

Speicherinhalt I	160	200	300	500
Leistungskennzahl N _L				
Heizwasser-Vorlauftemperatur				
90 °C	3,5	6,6	10,5	21,5
80 °C	3,1	5,6	10,0	19,5
70 °C	2,3	4,6	9,5	17,0

 \blacksquare Die Leistungskennzahl N_L ändert sich mit der Speicherbevorratungstemperatur T_{sp} .

 \blacksquare Speicherbevorratungstemperatur T_{sp} = Kaltwasser-Einlauftemperatur + 50 K $^{+5}$ K/ $^{-0}$ K

Richtwerte zur Leistungskennzahl N_L

- \blacksquare T_{sp} = 60 °C \rightarrow 1,0 × N_L
- \blacksquare T_{sp} = 55 °C \rightarrow 0,75 × N_L
- \blacksquare T_{sp} = 50 $^{\circ}C \rightarrow 0{,}55 \times N_{L}$
- \blacksquare T_{sp} = 45 °C \rightarrow 0,3 × N_L

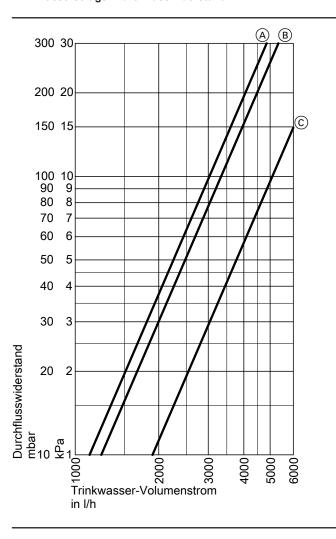
Kurzzeitleistung während 10 min, bezogen auf die Leistungskennzahl N_L

Speicherinhalt I	160	200	300	500
Kurzzeitleistung (I/10 min) bei Trinkwassererwärmung vor	10			
auf 45 °C				
Heizwasser-Vorlauftemperatur				
90 °C	251	340	430	634
80 °C	237	314	419	600
70 °C	207	285	408	556

Max. Zapfmenge während 10 min, bezogen auf die Leistungskennzahl N_{L}

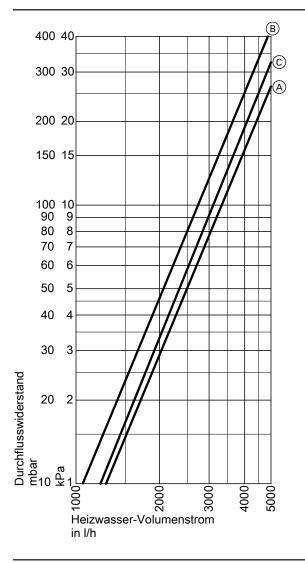
Speicherinhalt I	160	200	300	500
Max. Zapfmenge (I/min) bei Trinkwassererwärmung von 10				
auf 45 °C, mit Nachheizung				
Heizwasser-Vorlauftemperatur				
90 °C	25,1	34,0	43,0	63,4
80 °C	23,7	31,4	41,9	60,0
70 °C	20,7	28,5	40,8	55,6

Zapfbare Wassermenge


Speicherinhalt	I	160	200	300	500
Zapfrate bei Speichervolumen auf 60 °C aufge-	l/min	10	10	15	15
heizt					
Zapfbare Wassermenge ohne Nachheizung	I	133	155	240	420
Wasser mit t = 60 °C (konstant)					

Aufheizzeit

Falls die max. Dauerleistung des Speicher-Wassererwärmers bei der jeweiligen Heizwasser-Vorlauftemperatur und der Trinkwassererwärmung von 10 auf 60 °C zur Verfügung steht, werden die aufgeführten Aufheizzeiten erreicht.


Speicherinhalt	I	160	200	300	500
Aufheizzeit (min) bei Heizwasser-Vorla	auftemperatur				
90 °C		17	19	21	25
80 °C		20	24	30	33
70 °C		30	37	40	46

Trinkwasserseitiger Durchflusswiderstand

- A Speicherinhalt 160 und 200 IB Speicherinhalt 300 I
- © Speicherinhalt 500 I

Heizwasserseitiger Durchflusswiderstand

- A Speicherinhalt 160 und 200 IB Speicherinhalt 300 I
- © Speicherinhalt 500 I

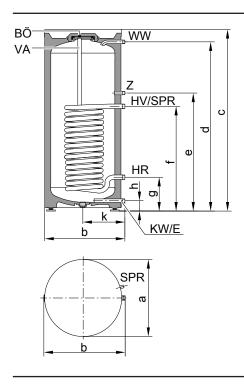
4.3 Technische Angaben Vitocell 100-V, Typ CVA, CVAA, CVAB, CVAB-A

Hinweis zur Dauerleistung

Bei der Planung mit der angegebenen oder ermittelten Dauerleistung die entsprechende Umwälzpumpe einplanen. Nur falls die Nenn-Wärmeleistung des Wärmeerzeugers ≥ der Dauerleistung ist, wird die angegebene Dauerleistung erreicht.

Dimensionierung von Einbringungsöffnungen

Die tatsächlichen Abmessungen des Speicher-Wassererwärmers können aufgrund von Fertigungstoleranzen geringfügig abweichen.


Technische Daten

Typ			CVAA/C\	/ΔR-Δ	CVAB	CVA	CV	ΔΔ
Speicherinhalt		1	160	200	300	500	750	950
(AT: Tatsächlicher Wasserinhalt)		•		200	333			000
Heizwasserinhalt		I	5,5	5,5	10,0	12,5	29,7	33,1
Bruttovolumen		ı	165,5	205,5	310,0	512,5	779,7	983,1
DIN-Registernummer					9W241–13 MC	C/E		
Dauerleistung bei unten aufgeführt	em							
Heizwasser-Volumenstrom								
Bei Trinkwassererwärmung von								
10 auf 45 °C und folgenden Heizv	vasser-							
Vorlauftemperaturen	90 °C	LAAZ	40	40	50	70	400	440
	90 C	kW l/h	40 982	40 982	53 1302	70 1720	109 2670	116 2861
	80 °C	kW	32	32	44	58	91	98
	80 C	I/h	786	786	1081	1425	2236	2398
	70 °C	kW	25	25	33	45	73	78
		l/h	614	614	811	1106	1794	1926
	60 °C	kW	17	17	23	32	54	58
		l/h	417	417	565	786	1332	1433
	50 °C	kW	9	9	18	24	33	35
		l/h	221	221	442	589	805	869
 Bei Trinkwassererwärmung von 10 auf 60 °C und folgenden Heizw Vorlauftemperaturen 	vasser-							
	90 °C	kW	36	36	45	53	94	101
		l/h	619	619	774	911	1613	1732
	80 °C	kW	28	28	34	44	75	80
	70.00	I/h	482	482	584	756	1284	1381
	70 °C	kW	19	19	23	33	54	58
Heizwasser-Volumenstrom für die		l/h m³/h	327 3,0	327 3,0	395 3,0	567 3,0	923 3,0	995 3,0
angegebenen Dauerleistungen		1119/11	3,0	3,0	3,0	3,0	3,0	3,0
Bereitschaftswärmeaufwand		kWh/	1,21/0,96	1,38/1,00	1,56	1,95	2,28	2,48
·		24 h						
Zulässige Temperaturen		°C	160	160	160	160	160	160
HeizwasserseitigTrinkwasserseitig		°C	95	95	95	95	160 95	160 95
Zulässiger Betriebsdruck			93	93	93	93	95	95
Heizwasserseitig		bar	10	10	10	10	10	10
1 ioizwaosci sollig		MPa	1,0	1,0	1,0	1,0	1,0	1,0
- Trinkwasserseitig		bar	10	10	10	10	10	10
ŭ		MPa	1,0	1,0	1,0	1,0	1,0	1,0
Abmessungen								
Länge a (∅)								
 Mit Wärmedämmung 		mm	582/634	582/634	668	859	1062	1062
 Ohne Wärmedämmung 		mm	_	_	_	650	790	790
Breite b								
- Mit Wärmedämmung		mm	607/637	607/637	706	923	1110	1110
Ohne Wärmedämmung		mm	_		_	837	1005	1005
Höhe c		100 100	1120	1240	1607	1040	1007	2407
Mit WärmedämmungOhne Wärmedämmung		mm	1129	1349	1687	1948 1844	1897 1817	2197 2123
Kippmaß		mm	_		_	1044	1017	2123
– Mit Wärmedämmung		mm	1250/1275	1450/1470	1790	_	_	_
Ohne Wärmedämmung		mm		_	_	1860	1980	2286
Gesamtgewicht mit Wärmedämmu	ng	kg	62/65	70/73	115	181	301	363
Heizfläche		m ²	1,0	1,0	1,5	1,9	3,5	3,9
			· · · · · ·	• * *	,-	,-		<u> </u>

Тур		CVAA/0	CVAB-A	CVAB	CVA	CV	AA A
Speicherinhalt	I	160	200	300	500	750	950
(AT: Tatsächlicher Wasserinhalt)							
Anschlüsse (Außengewinde)							
Heizwasservorlauf und -rücklauf	R	1	1	1	1	11/4	11/4
Kaltwasser, Warmwasser	R	3/4	3/4	1	11/4	11/4	11/4
Zirkulation	R	3/4	3/4	1	1	11/4	11/4
Energieeffizienzklasse		B/A	B/A	В	В	-	
Farbe							
Vitosilber			X	X	X	X	
Vitopearlwhite			X	X	X	_	_
Vitographite		Тур (CVAA	_	_	_	_

Abmessungen Typ CVAA, CVBA-A, 160 und 200 I Inhalt

BÖ Besichtigungs- und Reinigungsöffnung

E Entleerung

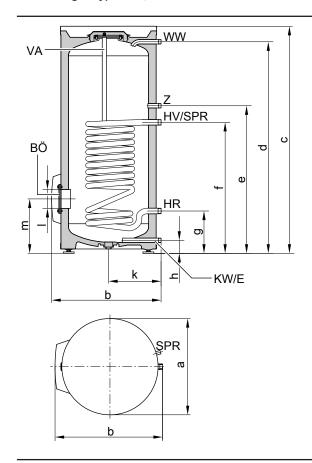
HR Heizwasserrücklauf

HV Heizwasservorlauf

KW Kaltwasser

SPR Tauchhülse für Speichertemperatursensor und Temperaturregler (Innendurchmesser 16 mm)

VA Magnesium-Schutzanode


WW Warmwasser

Z Zirkulation

Maße

Maise						
Тур				CVAA		CVAB-A
Speicherinhal	lt	I	160	200	160	200
Länge (∅)	а	mm	582	582	634	634
Breite	b	mm	607	607	637	637
Höhe	С	mm	1128	1348	1129	1349
	d	mm	1055	1275	1055	1275
	е	mm	889	889	889	889
	f	mm	639	639	639	639
	g	mm	254	254	254	254
	h	mm	77	77	77	77
	k	mm	317	317	347	347

Abmessungen Typ CVAB, 300 I Inhalt

BÖ Besichtigungs- und Reinigungsöffnung auch zum Einbau für Elektro-Heizeinsatz-EHE oder Ladelanze

E Entleerung

HR Heizwasserrücklauf

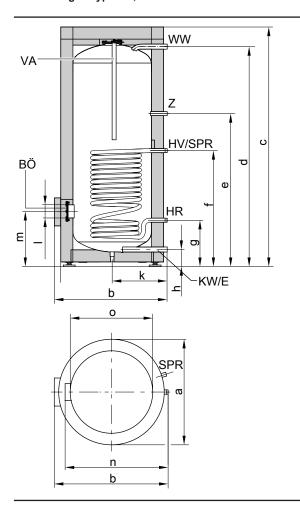
HV Heizwasservorlauf

KW Kaltwasser

SPR Tauchhülse für Speichertemperatursensor und Temperaturregler (Innendurchmesser 16 mm)

VA Magnesium-Schutzanode

WW Warmwasser

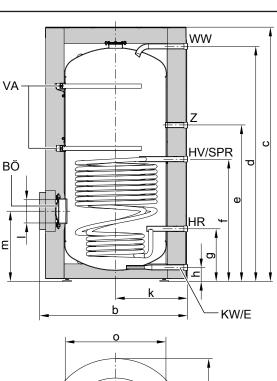

Z Zirkulation

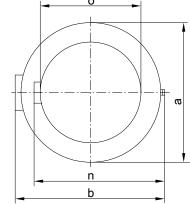
5784189

Maße Typ CVAB

waise Typ CVAD			
Speicherinhalt		I	300
Länge (∅)	а	mm	668
Breite	b	mm	706
Höhe	С	mm	1687
	d	mm	1607
	е	mm	1122
	f	mm	882
	g	mm	267
	h	mm	83
	k	mm	362
	1	mm	Ø 100
	m	mm	340

Abmessungen Typ CVA, 500 I Inhalt




- ΒÖ Besichtigungs- und Reinigungsöffnung auch zum Einbau für Elektro-Heizeinsatz-EHE oder Ladelanze
- Ε Entleerung
- HR Heizwasserrücklauf
- ΗV Heizwasservorlauf
- KW Kaltwasser
- SPR Tauchhülse für Speichertemperatursensor und Temperaturregler (Innendurchmesser 16 mm)
- VA Magnesium-Schutzanode
- WW Warmwasser
- Ζ Zirkulation

Maße Typ CVA

Speicherinhalt		I	500
Länge (∅)	а	mm	859
Breite	b	mm	923
Höhe	С	mm	1948
	d	mm	1784
	е	mm	1230
	f	mm	924
	g	mm	349
	h	mm	107
	k	mm	455
	I	mm	Ø 100
	m	mm	422
Ohne Wärmedämmung	n	mm	837
Ohne Wärmedämmung	0	mm	Ø 650

Abmessungen Typ CVAA, 750 und 950 I Inhalt

- Besichtigungs- und Reinigungsöffnung auch zum Einbau für ΒÖ Elektro-Heizeinsatz-EHE oder Ladelanze
- Entleerung
- HR Heizwasserrücklauf
- HVHeizwasservorlauf
- ΚW Kaltwasser
- SPR Klemmsystem zur Befestigung von Tauchtemperatursensoren am Speichermantel. Aufnahmen für 3 Tauchtemperatursenso-
- VA Magnesium-Schutzanode

WW Warmwasser Z Zirkulation

Maße Typ CVAA

Speicherinhalt		ı	750	950
Länge (∅)	а	mm	1062	1062
Breite	b	mm	1110	1110
Höhe	С	mm	1897	2197
	d	mm	1788	2094
	е	mm	1179	1283
	f	mm	916	989
	g	mm	377	369
	h	mm	79	79
	k	mm	555	555
	I	mm	Ø 180	Ø 180
	m	mm	513	502
Ohne Wärmedämmung	n	mm	1005	1005
Ohne Wärmedämmung	0	mm	Ø 790	Ø 790

Leistungskennzahl N_L nach DIN 4708

Speicherinhalt	I	160	200	300	500	750	950
Leistungskennzahl N _L bei Heiz	wasser-						
Vorlauftemperatur							
90 °C		2,5	4,0	9,7	21,0	38,0	44,0
80 °C		2,4	3,7	9,3	19,0	32,0	42,0
70 °C		2,2	3,5	8,7	16,5	25,0	39,0

- \blacksquare Die Leistungskennzahl N_L ändert sich mit der Speicherbevorratungstemperatur $T_{\rm sp}$
- Speicherbevorratungstemperatur T_{sp} = Kaltwasser-Einlauftemperatur + 50 K +5 K/-0 K

Richtwerte zur Leistungskennzahl N_L

- \blacksquare T_{sp} = 60 °C \rightarrow 1,0 × N_L
- \blacksquare T_{sp} = 55 °C \rightarrow 0,75 × N_L
- \blacksquare T_{sp} = 50 °C \rightarrow 0,55 × N_L
- \blacksquare T_{sp} = 45 °C \rightarrow 0,3 × N_L

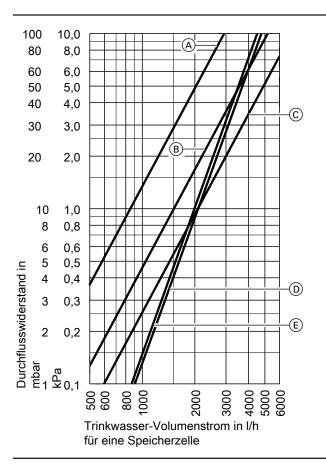
Kurzzeitleistung während 10 min, bezogen auf die Leistungskennzahl N_L

Speicherinhalt	I	160	200	300	500	750	950
Kurzzeitleistung bei Trinkwassererwär-							
mung von 10 auf 45 °C							
Heizwasser-Vorlauftemperatur							
90 °C	I/10 min	210	262	407	618	850	937
80 °C	I/10 min	207	252	399	583	770	915
70 °C	I/10 min	199	246	385	540	665	875

Max. Zapfmenge während 10 min, bezogen auf die Leistungskennzahl N_L

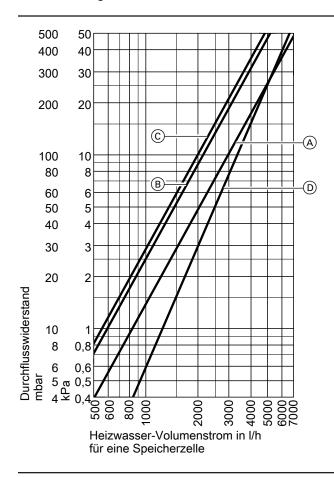
Speicherinhalt	I	160	200	300	500	750	950
Max. Zapfmenge bei Trinkw	assererwär-						
mung von 10 auf 45 °C, mit I	Nachheizung						
Heizwasser-Vorlauftemperat	ur						
90 °C	l/min	21	26	41	62	85	94
80 °C	l/min	21	25	40	58	77	92
70 °C	l/min	20	25	39	54	67	88

Zapfbare Wassermenge


Speicherinhalt	I	160	200	300	500	750	950
Zapfrate bei Speichervolumen auf 60 °C	l/min	10	10	15	15	20	20
aufgeheizt							
Zapfbare Wassermenge ohne Nachhei-	I	120	145	240	420	615	800
zung							
Wasser mit t = 60 °C (konstant)							

Aufheizzeit

Falls die max. Dauerleistung des Speicher-Wassererwärmers bei der jeweiligen Heizwasser-Vorlauftemperatur und der Trinkwassererwärmung von 10 auf 60 °C zur Verfügung steht, werden die aufgeführten Aufheizzeiten erreicht.


Speicherinhalt	I	160	200	300	500	750	950
Aufheizzeit	·						
Heizwasser-Vorlauftemperatur							
90 °C	min	19	19	23	28	23	35
80 °C	min	24	24	31	36	31	45
70 °C	min	34	37	45	50	45	70

Trinkwasserseitige Durchflusswiderstände

- Speicherinhalt 160 und 200 I
- $\widecheck{\mathbb{B}}$ Speicherinhalt 300 I
- © (D) Speicherinhalt 500 I
- Speicherinhalt 750 I Speicherinhalt 950 I

Heizwasserseitige Durchflusswiderstände

- (A) (B) Speicherinhalt 160 und 200 I
- Speicherinhalt 300 I
- Speicherinhalt 500 I
- Speicherinhalt 750 I und 950 I

4.4 Technische Angaben Vitocell 100-B, Typ CVB, CVBB, CVBC

Hinweis zur oberen Heizwendel

Die obere Heizwendel ist für den Anschluss an einen Wärmeerzeuger vorgesehen.

Hinweis zur unteren Heizwendel

Die untere Heizwendel ist für den Anschluss von Sonnenkollektoren oder Wärmepumpen vorgesehen.

Für den Einbau des Speichertemperatursensors den im Lieferumfang enthaltenen Einschraubwinkel mit Tauchhülse verwenden.

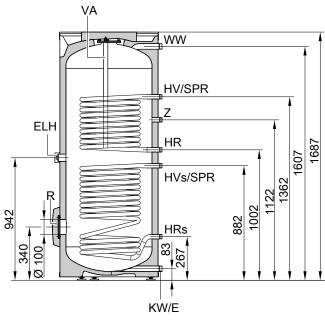
Hinweis zur Dauerleistung

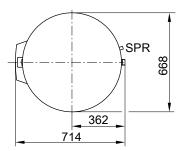
Bei der Planung mit der angegebenen oder ermittelten Dauerleistung die entsprechende Umwälzpumpe einplanen. Nur falls die Nenn-Wärmeleistung des Wärmeerzeugers ≥ der Dauerleistung ist, wird die angegebene Dauerleistung erreicht.

Dimensionierung von Einbringungsöffnungen

Die tatsächlichen Abmessungen des Speicher-Wassererwärmers können aufgrund von Fertigungstoleranzen geringfügig abweichen.

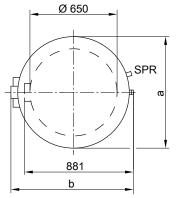
Technische Daten


TCOIIIISCHE BUICH												
Тур			CVI		CV		C\		CV		CV	
Speicherinhalt		I	30	0	40	00	50	00	75	50	95	50
(AT: Tatsächlicher Wass	erin-											
halt)			0		0.		0.		0.1			
Heizwendel			Oben	Unten	Oben	Unten	Oben	Unten	Oben	Unten	Oben	Unten
Heizwasserinhalt		l	6	10	6,5	10,5	9	12,5	13,8	29,7	18,6	33,1
Bruttovolumen		l	316	316	417	417	521,5	521,5	795,5	795,5	1001,7	1001,7
DIN-Register-Nr.			Bean	tragt				9W241-	13MC/E			
Dauerleistung bei unten												
führtem Heizwasser-Volur	men-											
strom												
Bei Trinkwassererwärm	-											
von 10 auf 45 °C und fo												
den Heizwasser -Vorlau	πem-											
peraturen		LAAZ	24		40	00	47	70	70	444	00	400
	un °(:	kW l/h	31 761	53 1302	42 1032	63	47	70 1720	76 1866	114 2790	90	122
						1548	1154	1720			2221	2995
	80 (;	kW	26 638	44 1081	33 811	52 1278	40 982	58 1425	63 1546	94 2311	75 1840	101 2482
		I/h										
	/() °(:	kW l/h	20	33	25	39	30 737	45 1106	49 1200	73 1794	58	78
		kW	491 15	811 23	614 17	958 27	22	32	35	52	1428 41	1926 56
	60°C:			565	418	663	540				1015	
		l/h kW	368 11	18	10	13	16	786 24	853 26	1275 39	31	1369 42
	50°C	I/h	270	442	246		393		639		!!!	
– Bei Trinkwassererwärm		1/11	270	442	240	319	393	589	039	955	760	1026
von 10 auf 60 °C und fo	0											
den Heizwasser -Vorlau	Ü											
peraturen	item-											
peraturen		kW	23	45	36	56	36	53	59	79	67	85
	901-01	l/h	395	774	619	963	619	911	1012	1359	1157	1465
		kW	20	34	27	42	30	44	49	66	56	71
	80 (;	l/h	344	584	464	722	516	756	840	1128	960	1216
	70 °C		15	23	18	29	22	33	37	49	42	53
		l/h	258	395	310	499	378	567	630	846	720	912
Heizwasser-Volumenstro	om für	m³/h	3,		3,		3,		3.		3,	
die angegebenen Dauerle			,		-,					, -	,	
gen												
Max. anschließbare Leis	tung	kW	10)	1:	2	1	4	2	1	2	3
einer Wärmepumpe	•											
Bei 55 °C Heizwasservorla	auf-											
und 45 °C Warmwasserte	mpera-											
tur bei angegebenem Heiz	zwas-											
ser-Volumenstrom (beide	Heiz-											
wendeln in Reihe geschal												
Bereitschaftswärmeaufv		kWh/	1,5	57	1,8	30	1,9	95	2,2	28	2,4	48
		24 h										
Volumen-Bereitschaftste	$eilV_aux$	I	12	7	16	67	23	31	36	35	50	00
Volumen-Solarteil V _{sol}		I	17	3	23	33	26	39	38	35	45	50
Zulässige Temperaturen	1											
 Heizwasserseitig 		°C	16	0	16	60	16	30	16	30	16	60
 Trinkwasserseitig 		°C	9	5	9	5	9	5	9	5	9	5
 Solarseitig 		°C	16	0	16	0	16	30	16	30	16	0


5784189

Тур		CVBC	;	CVB		CV	В	CVBB	3	CVB	В
Speicherinhalt	I	300		400		50	0	750		950)
(AT: Tatsächlicher Wasserin-											
halt)											
Zulässiger Betriebsdruck											
 Heizwasserseitig 	bar	10		10		10)	10		10	
	MPa	1,0		1,0		1,0)	1,0		1,0	
 Trinkwasserseitig 	bar	10		10		10)	10		10	
	MPa	1,0		1,0		1,0)	1,0		1,0	
Solarseitig	bar	10		10		10)	10		10	
	MPa	1,0		1,0		1,0)	1,0		1,0	
Abmessungen											
Länge a (∅)											
 Mit Wärmedämmung 	mm	668		859		859	9	1062		106	2
 Ohne Wärmedämmung 	mm	_		650		65	0	790		790)
Gesamtbreite b											
 Mit Wärmedämmung 	mm	714		923		92	3	1110		1110)
 Ohne Wärmedämmung 	mm	_		881		88	1	1005		100	5
Höhe c											
 Mit Wärmedämmung 	mm	1687		1624		194	-8	1897		219	7
 Ohne Wärmedämmung 	mm	_		1518		184	4	1797		210	3
Kippmaß											
 Mit Wärmedämmung 	mm	1790		_		_		_		_	
 Ohne Wärmedämmung 	mm	_		1550		186	0	1980		228	6
Gesamtgewicht mit Wärme-	kg	126		167		20	5	320		390)
dämmung	-										
Betriebsgesamtgewicht mit	kg	428		569		70	7	1072		134	2
Elektro-Heizeinsatz											
Heizfläche	m ²	0,9	1,5	1,0	1,5	1,4	1,9	1,6	3,5	2,2	3,9
Anschlüsse (Außengewinde)		'						'		-	
Heizwendel oben	R	1		1		1		1		1	
Heizwendel unten	R	1		1		1		11/4		11/4	
Kaltwasser, Warmwasser	R	1		11/4		11/2	4	11/4		11/4	
Zirkulation	R	1		1		1		11/4		11/4	
Anschlüsse (Innengewinde)											
Elektro-Heizeinsatz	Rp	11/2		11/2		1½	, 2	_		_	
Energieeffizienzklasse		В		В		В		_		_	
Farbe											
Vitosilber		X		_		_		_		_	
Vitopearlwhite		X		X		Х		X		X	


Abmessungen Typ CVBC, 300 I Inhalt


Abmessungen Typ CVB, 400 und 500 I Inhalt

Ε Entleerung ELH Elektro-Heizeinsatz Heizwasserrücklauf HR HR_s Heizwasserrücklauf Solaranlage HV Heizwasservorlauf HV_s Heizwasservorlauf Solaranlage KW Kaltwasser Besichtigungs- und Reinigungsöffnung mit Flanschabdeckung R (auch geeignet zum Einbau eines Elektro-Heizeinsatzes) SPR Tauchhülse für Speichertemperatursensor und Temperaturregler (Innendurchmesser 16 mm) Thermometer (Zubehör) TΗ Magnesium-Schutzanode VA WW Warmwasser Ζ Zirkulation

E Entleerung

ELH Stutzen für Elektro-Heizeinsatz

HR Heizwasserrücklauf

HR_s Heizwasserrücklauf Solar

HV Heizwasservorlauf

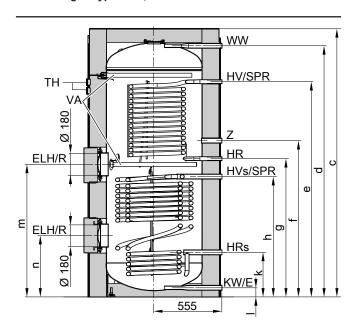
HV_s Heizwasservorlauf Solar

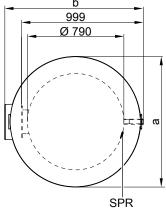
KW Kaltwasser

R Besichtigungs- und Reinigungsöffnung mit Flanschabdeckung (auch geeignet zum Einbau eines Elektro-Heizeinsatzes)

SPR Tauchhülse für Speichertemperatursensor und Temperaturregler (Innendurchmesser 16 mm)

TH Thermometer (Zubehör)

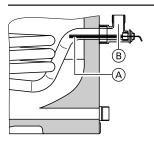

VA Magnesium-Schutzanode


WW Warmwasser Z Zirkulation

Maße Typ CVB

Maise Typ CVD			
Speicherinhalt	I	400	500
a	mm	Ø 859	Ø 859
b	mm	923	923
С	mm	1624	1948
d	mm	1458	1784
е	mm	1204	1444
f	mm	1044	1230
g	mm	924	1044
h	mm	804	924
i	mm	349	349
k	mm	107	107
1	mm	422	422
m	mm	864	984

Abmessungen Typ CVBB, 750 und 950 I Inhalt



b

Entleerung

ELH Elektro-Heizeinsatz oder Landelanze

Speichertemperatursensor bei Solarbetrieb

Anordnung des Speichertemperatursensors im Heizwasserrücklauf HR_s

- (A) Speichertemperatursensor im Heizwasserrücklauf (Lieferumfang der Solarregelung)
- Einschraubwinkel mit Tauchhülse (Lieferumfang, Innendurchmesser 6,5 mm)

Heizwasserrücklauf

Heizwasserrücklauf Solaranlage HR_s

HV Heizwasservorlauf

 HV_s Heizwasservorlauf Solaranlage

KW

Besichtigungs- und Reinigungsöffnung mit Flanschabdeckung

SPR Klemmsystem zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren

ΤH Thermometer (Zubehör)

VA Magnesium-Schutzanode

WW Warmwasser Ζ Zirkulation

Maße Typ CVBB

a.so .,p 0122			
Speicherinhalt	I	750	950
а	mm	1062	1062
b	mm	1110	1110
С	mm	1897	2197
d	mm	1749	2054
е	mm	1464	1760
f	mm	1175	1278
g	mm	1044	1130
h	mm	912	983
k	mm	373	363
I	mm	74	73
m	mm	975	1084
n	mm	509	501

Leistungskennzahl N_L nach DIN 4708, obere Heizwendel

Speicherinhalt	I	300	400	500	750 ^{*4}	950 ^{*4}
Leistungskennzahl N _L						
Heizwasser-Vorlauftemperatur						
90 °C		1,6	3,0	6,0	8,0	11,0
80 °C		1,5	3,0	6,0	8,0	11,0
70 °C		1,4	2,5	5,0	7,0	10,0

■ Die Leistungskennzahl N_L ändert sich mit der Speicherbevorratungstemperatur Tsp

 $T_{sp} = 50 \ ^{\circ}C \longrightarrow 0,55 \times N_{L}$ $T_{sp} = 45 \ ^{\circ}C \longrightarrow 0,3 \times N_{L}$

■ Speicherbevorratungstemperatur T_{sp} = Kaltwasser-Einlauftemperatur + 50 K +5 K/-0 K

Richtwerte zur Leistungskennzahl N_L

 \blacksquare T_{sp} = 60 °C \rightarrow 1,0 × N_L

 \blacksquare T_{sp} = 55 °C \rightarrow 0,75 × N_L

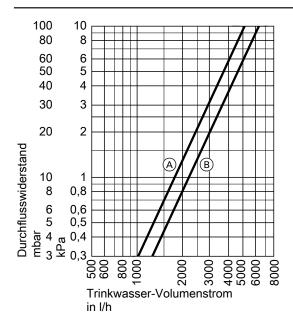
Kurzzeitleistung während 10 min, bezogen auf die Leistungskennzahl N_L

Speicherinhalt	ı	300	400	500	750 ^{*4}	950 ^{*4}
Kurzzeitleistung bei Trinkwassererwärmung von 10						
auf 45 °C						
Heizwasser-Vorlauftemperatur						
90 °C	I/10 min	173	230	319	438	600
80 °C	I/10 min	168	230	319	438	600
70 °C	I/10 min	164	210	299	400	550

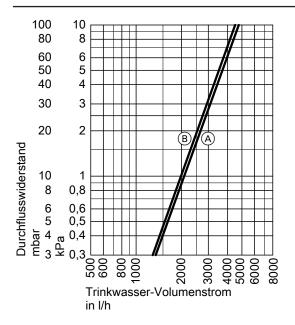
Max. Zapfmenge während 10 min, bezogen auf die Leistungskennzahl N_L

Speicherinhalt	I	300	400	500	750*4	950 ^{*4}
Max. Zapfmenge bei Trinkwassererwärmung von 10						
auf 45 °C, mit Nachheizung						
Heizwasser-Vorlauftemperatur						
90 °C	l/min	17	23	32	44	60
80 °C	l/min	17	23	32	44	60
70 °C	l/min	16	21	30	40	55

Zapfbare Wassermenge

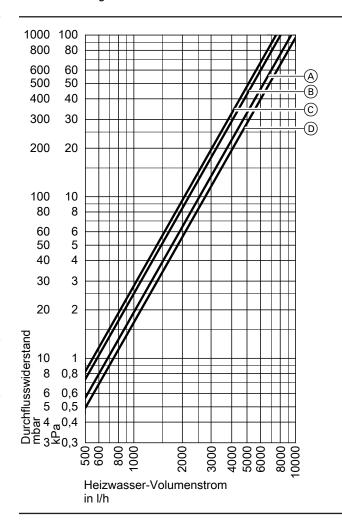

Speicherinhalt	I	300	400	500	750 ^{*4}	950 ^{*4}
Zapfrate bei Speichervolumen auf 60 °C aufgeheizt	l/min	15	15	15	15	15
Zapfbare Wassermenge ohne Nachheizung		110	120	220	330	420
Wasser mit t = 60 °C (konstant)						

Aufheizzeit

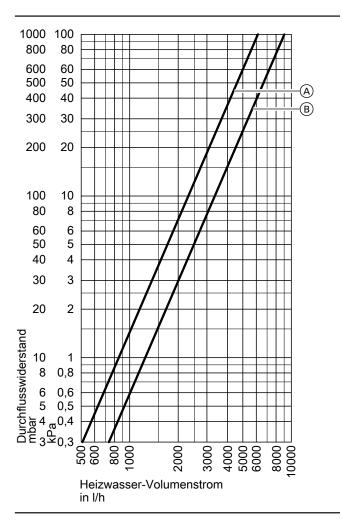

Falls die max. Dauerleistung des Speicher-Wassererwärmers bei der jeweiligen Heizwasser-Vorlauftemperatur und der Trinkwassererwärmung von 10 auf 60 °C zur Verfügung steht, werden die aufgeführten Aufheizzeiten erreicht.

Speicherinhalt	I	300	400	500	750 ^{*4}	950 ^{*4}
Aufheizzeit						
Heizwasser-Vorlauftemperatur						
90 °C	min	16	17	19	17	18
80 °C	min	22	23	24	21	22
70 °C	min	30	36	37	26	28

Trinkwasserseitige Durchflusswiderstände



- A Speicherinhalt 300 I
- B Speicherinhalt 400 und 500 l



- A Speicherinhalt 750 I
- B Speicherinhalt 950 I

Heizwasserseitige Durchflusswiderstände

- (A) Speicherinhalt 300 I (Heizwendel oben)
- B Speicherinhalt 300 I (Heizwendel unten), Speicherinhalt 400 und 500 I (Heizwendel oben)
- © Speicherinhalt 500 I (Heizwendel unten)
- D Speicherinhalt 400 I (Heizwendel unten)

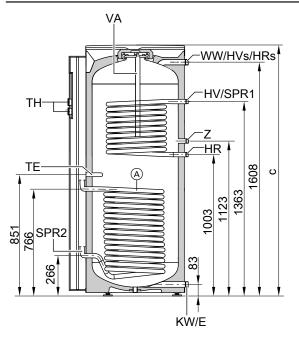
- A Speicherinhalt 750 und 950 I (Heizwendel oben)B Speicherinhalt 750 und 950 I (Heizwendel unten)

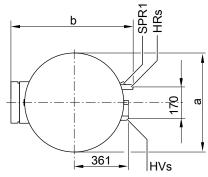
4.5 Technische Angaben Vitocell 100-U, Typ CVUD, CVUD-A

Hinweis zur Dauerleistung obere Heizwendel

Bei der Planung mit der angegebenen oder ermittelten Dauerleistung die entsprechende Umwälzpumpe einplanen. Nur falls die Nenn-Wärmeleistung des Wärmeerzeugers ≥ der Dauerleistung ist, wird die angegebene Dauerleistung erreicht.

Dimensionierung von Einbringungsöffnungen


Die tatsächlichen Abmessungen des Speicher-Wassererwärmers können aufgrund von Fertigungstoleranzen geringfügig abweichen.


Tec	hn	icc	ha.	Dat	on

Тур			CVUD	CVUD-A
Speicherinhalt		1	300	0,05 //
(AT: Tatsächlicher Wasserinhalt)				
Heizwasserinhalt				
- Obere Heizwendel			6	
- Untere Heizwendel		i	10	
Bruttovolumen		1	316	
DIN-Register-Nr.			Beantra	aat
Dauerleistung obere Heizwendel bei unten aufgeführtem Heizwasser-\	/olumenstrom		Boariare	.9.
 Bei Trinkwassererwärmung von 10 auf 45 °C und folgenden Heizwass 				
peraturen	or vondanom			
polation.		kW	31	
	90 °C	l/h	761	
		kW	26	
	80 °C	l/h	638	
		kW	20	
	70 °C	l/h	491	
	-	kW	15	
	60 °C	I/h	368	
	50 °C	kW	11	
	30 C	l/h	270	
Rei Trinkwessererwärmung von 10 auf 60 °C und felgenden Heizwass	or Variouftam		270	
 Bei Trinkwassererwärmung von 10 auf 60 °C und folgenden Heizwass peraturen 	ei-vonauneni-			
peraturen		kW	23	
	90 °C	I/h	395	
	80 °C	kW	20 344	
	70.00	I/h		
	70 °C	kW	15	
		I/h	258	
Heizwasser-Volumenstrom für die angegebenen Dauerleistungen		m³/h	3,0	
Zapfrate		I/min	15	
Zapfbare Wassermenge ohne Nachheizung		1	110	
Speichervolumen auf 60 °C aufgeheizt				
Wasser mit t = 60 °C (konstant)				
Bereitschaftswärmeaufwand		kWh/24 h	1,52	1,19
Volumen-Bereitschaftsteil V _{aux}		I	127	
Volumen-Solarteil V _{sol}		1	173	
Zulässige Temperaturen				
- Heizwasserseitig		°C	160	
- Trinkwasserseitig		°C	95	
- Solarseitig		°C	160	
Zulässiger Betriebsdruck				
- Heizwasserseitig		bar	10	
		MPa	1,0	
- Trinkwasserseitig		bar	10	
		MPa	1,0	
- Solarseitig		bar	10	
		MPa	1,0	
Abmessungen (mit Wärmedämmung)				
Länge a (\emptyset)		mm	668	
Gesamtbreite b		mm	840	
Höhe c		mm	1711	
Kippmaß		mm	1812	
Gesamtgewicht mit Wärmedämmung		kg	160	
Betriebsgesamtgewicht		kg	462	
			702	
Heizfläche				
Heizfläche - Ohere Heizwendel		m ²	0.0	
Heizfläche - Obere Heizwendel - Untere Heizwendel		m ² m ²	0,9 1,5	

Тур		CVUD	CVUD-A
Speicherinhalt	1	3	00
(AT: Tatsächlicher Wasserinhalt)			
Anschlüsse (Außengewinde)			
Heizwasservorlauf und -rücklauf	R		1
Kaltwasser, Warmwasser	R	1	
Zirkulation	R		1
Energieeffizienzklasse		В	A
Farbe			
- Vitosilber		X	_
Vitopearlwhite		X	X

Abmessungen

- E Entleerung

Leistungskennzahl ${ m N_L}$ nach DIN 4708, obere Heizwendel

Leistungskennzahl N _L bei Heizwasser-Vorlauftemperatur	
90 °C	1,6
°C 08	1,5
70 °C	1,4

HR Heizwasserrücklauf

HR_s Heizwasserrücklauf Solaranlage

HV Heizwasservorlauf

HV_s Heizwasservorlauf Solaranlage

KW Kaltwasser

SPR1 Tauchhülse für Speichertemperatursensor und Temperatur-

regler (Innendurchmesser 16 mm)

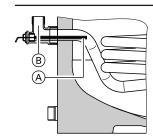
SPR2 Tauchhülse für Speichertemperatursensor Solaranlage

(Innendurchmesser 6,5 mm)

TE Tauchhülse (Innendurchmesser 16 mm)

TH Thermometer

VA Magnesium-Schutzanode


WW Warmwasser

Z Zirkulation

Maße

Maß	mm
a	668
b	840
С	1711

Speichertemperatursensor bei Solarbetrieb

Anordnung des Speichertemperatursensors im Heizwasserrücklauf

- A Speichertemperatursensor im Heizwasserrücklauf (Lieferumfang des Solar-Sets)
- (B) Einschraubwinkel mit Tauchhülse (Lieferumfang, Innendurchmesser 6,5 mm)

- \blacksquare Die Leistungskennzahl $\rm N_L$ ändert sich mit der Speicherbevorratungstemperatur $\rm T_{sp}$
- Speicherbevorratungstemperatur T_{sp} = Kaltwasser-Einlauftemperatur +50 K +5 K/-0 K

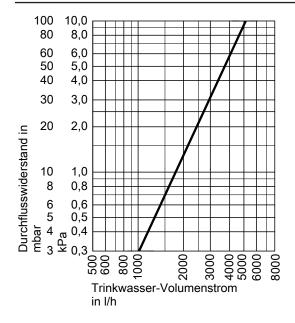
Richtwerte zur Leistungskennzahl N_L

- \blacksquare T_{sp} = 60 °C \rightarrow 1,0 × N_L
- \blacksquare T_{sp} = 55 °C \rightarrow 0,75 × N_L
- \blacksquare T_{sp} = 50 °C \rightarrow 0,55 × N_L
- \blacksquare T_{sp} = 45 °C \rightarrow 0,3 × N_L

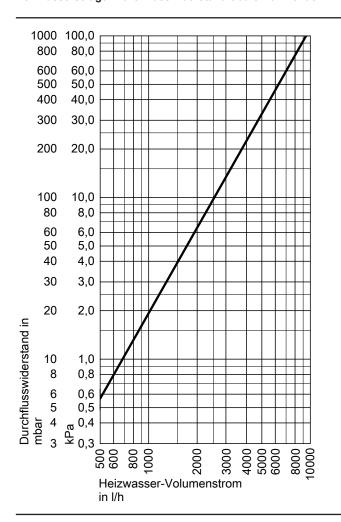
Kurzzeitleistung während 10 min, bezogen auf die Leistungskennzahl N_L

Kurzzeitleistung (I/10min) bei Trinkwassererwärmung von 10 auf 45 °C		
Heizwasser-Vorlauftemperatur		
90 °C	173	
80 °C	168	
70 °C	164	

Max. Zapfmenge während 10 min, bezogen auf die Leistungskennzahl N_L


Max. Zapfmenge (I/min) bei Trinkwassererwärmung von 10 auf 45 °C, mit Nachheizung			
Heizwasser-Vorlauftemperatur			
90 °C	17		
80 °C	17		
70 °C	16		

Aufheizzeit

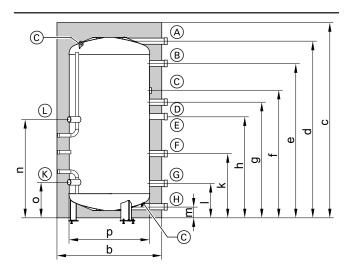

Falls die max. Dauerleistung des Speicher-Wassererwärmers bei der jeweiligen Heizwasser-Vorlauftemperatur und der Trinkwassererwärmung von 10 auf 60 °C zur Verfügung steht, werden die aufgeführten Aufheizzeiten erreicht.

Aufheizzeit (min)			
Heizwasser-Vorlauftemperatur			
90 °C	16		
0° C	22		
70 °C	30		

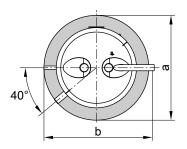
Trinkwasserseitiger Durchflusswiderstand

Heizwasserseitiger Durchflusswiderstand obere Heizwendel

4.6 Technische Angaben Vitocell 100-E, Typ SVPB


Dimensionierung von Einbringungsöffnungen

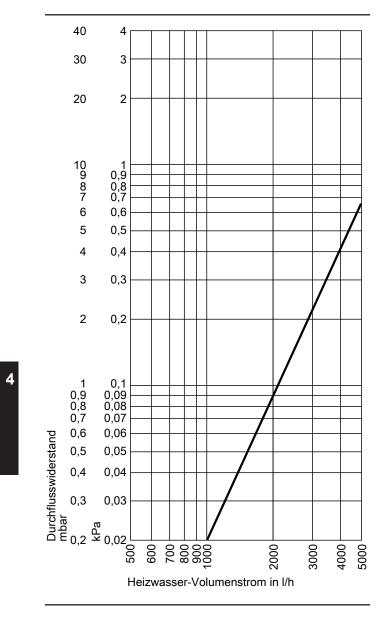
Die tatsächlichen Abmessungen des Speicher-Wassererwärmers können aufgrund von Fertigungstoleranzen geringfügig abweichen.


Technische Daten

Тур		SVPC					
Speicherinhalt	I	60	0	75	750		0
(AT: Tatsächlicher Wasserinhalt)							
Wärmedämmung							
- Standard		X		X		X	
- Hocheffizient			X		X		X
Zulässige Heizwasser-Vorlauftemperatur	°C	110	110	110	110	110	110
Zulässiger Betriebsdruck heizwasserseitig	bar	6	6	6	6	6	6
	MPa	0,6	0,6	0,6	0,6	0,6	0,6
Abmessungen							
Länge a (∅)							
 Mit Wärmedämmung 	mm	1065	1065	1065	1065	1065	1065
 Ohne Wärmedämmung 	mm	790	790	790	790	790	790
Breite b							
 Mit Wärmedämmung 	mm	1110	1110	1110	1110	1110	1110
 Ohne Wärmedämmung 	mm	1042	1042	1042	1042	1042	1042
Höhe c							
 Mit Wärmedämmung 	mm	1645	1720	1900	1970	2200	2280
 Ohne Wärmedämmung 	mm	1535	1535	1815	1815	2120	2120
Kippmaß							
 Ohne Wärmedämmung und Stellfüße 	mm	1630	1630	1890	1890	2195	2195
Gewicht							
 Mit Wärmedämmung 	kg	115	120	135	140	155	160
 Ohne Wärmedämmung 	kg	95	95	110	110	125	125
Anschlüsse (Außengewinde)							
Heizwasservorlauf und -rücklauf	R	2	2	2	2	2	2
Bereitschaftswärmeaufwand	kWh/24 h	2,68	2,12	2,74	2,23	2,81	2,4
Energieeffizienzklasse		_	_	_	_	_	
Farbe							
Vitographite		X	X	X	X	X	X
- Vitosilber		X		X		X	
Vitopearlwhite		X	X	X	X	X	X

Abmessungen

- Befestigung Thermometerfühler oder Befestigung zusätzlicher Sensoren (Klemmbügel)
- (D) Heizwasservorlauf 3, Heizwasserrücklauf 1 und Klemmsystem 2 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- (E) Heizwasservorlauf 3, Heizwasserrücklauf 1 und Klemmsystem 3 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- (F) Heizwasserrücklauf 2 und Klemmsystem 4 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- G Heizwasserrücklauf 3 und Klemmsystem 5 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- (H) Heizwasserrücklauf 4 und Entleerung
- K) Muffe für Elektro-Heizeinsatz-EHE 2
- (L) Muffe für Elektro-Heizeinsatz-EHE 1



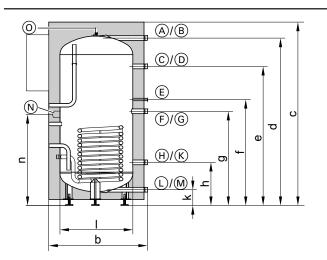
- A Heizwasservorlauf 1 und Entlüftung
- B Heizwasservorlauf 2 und Klemmsystem 1 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem

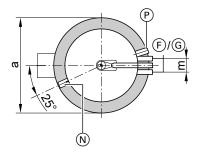
М	2	R	Δ

Тур					SV	PC		
Speicherinhalt		I	600		750		910	
(AT: Tatsächlicher Wasserinhalt)								
Wärmedämmung								
- Standard			X		Х		X	
- Hocheffizient				X		X		Х
Länge (∅)	а	mm	1065	1065	1065	1065	1065	1065
Breite	b	mm	1110	1110	1110	1110	1110	1110
Höhe	С	mm	1645	1720	1900	1970	2200	2280
	d	mm	1497	1497	1777	1777	2083	2083
	е	mm	1296	1296	1558	1558	1863	1863
	f	mm	1012	1012	1306	1306	1532	1532
	g	mm	926	926	1179	1179	1299	1299
	h	mm	785	785	1038	1038	1159	1159
	k	mm	596	596	675	675	751	751
	I	mm	355	355	383	383	383	383
	m	mm	155	155	155	155	155	155
	n	mm	930	930	1001	1001	1135	1135
	0	mm	395	395	395	395	395	395
Länge (∅) ohne Wärmedämmung	р	mm	790	790	790	790	790	790

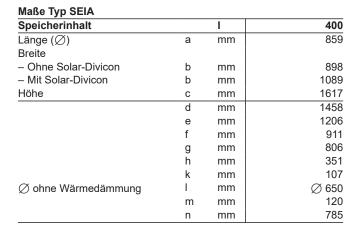
Heizwasserseitige Durchflusswiderstände

4.7 Technische Angaben Vitocell 140-E, Typ SEIA, SEIC und 160-E, Typ SESB

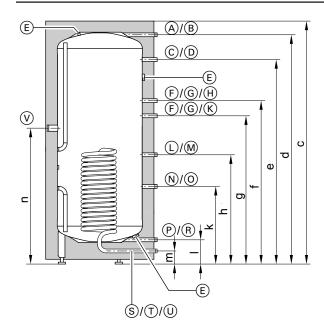

Dimensionierung von Einbringungsöffnungen

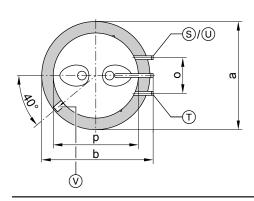

Die tatsächlichen Abmessungen des Speicher-Wassererwärmers können aufgrund von Fertigungstoleranzen geringfügig abweichen.

Technische Daten


Тур		SEIA		SEIC		SES	SB
Speicherinhalt	I	400	600	750	950	750	950
(AT: Tatsächlicher Wasserinhalt)							
Inhalt Wärmetauscher Solar	I	10,5	12	12	14	12	14
Inhalt Heizwasser		389,5	588	738	936	738	936
DIN-Registernummer		Beantragt		9W264E		9W2	65E
Zulässige Temperaturen							
 Heizwasserseitig 	°C		11	0		11	0
Solarseitig	°C		14	10		14	.0
Zulässiger Betriebsdruck							
 Heizwasserseitig 	bar		3			3	
	MPa		0,	3		0,	3
 Solarseitig 	bar		1			10	
	MPa		1,	0		1,	0
Abmessungen							
Länge a (∅)							
 Mit Wärmedämmung 	mm	859	1064	1064	1064	1064	1064
 Ohne Wärmedämmung 	mm	650	790	790	790	790	790
Breite b							
 Mit Wärmedämmung 	mm	1089	1119	1119	1119	1119	1119
 Ohne Wärmedämmung 	mm	863	1042	1042	1042	1042	1042
Höhe c							
 Mit Wärmedämmung 	mm	1617	1645	1900	2200	1900	2200
– Ohne Wärmedämmung	mm	1506	1520	1814	2120	1814	2120
Kippmaß							
Ohne Wärmedämmung und Stellfüße	mm	1550	1630	1890	2195	1890	2195
Gewicht							
- Mit Wärmedämmung	kg	154	135	159	182	168	193
- Ohne Wärmedämmung	kg	137	112	131	150	140	161
Anschlüsse (Außengewinde)	_			_		_	_
Heizwasservorlauf und -rücklauf	R	11/4	2	2	2	2	2
Heizwasservorlauf und -rücklauf (Solar)	G	1	1	1	1	1	1
Wärmetauscher Solar	2	4.5	4.0	4.0	0.4	4.0	0.4
Heizfläche	m ²	1,5	1,8	1,8	2,1	1,8	2,1
Bereitschaftswärmeaufwand	kWh/24 h	1,80	2,10	2,25	2,45	2,25	2,45
Volumen-Bereitschaftsteil V _{aux}	<u> </u>	210	230	380	453	380	453
Volumen-Solarteil V _{sol}	l	190	370	370	497	370	497
Energieeffizienzklasse		В	_	_	_	_	_
Farbe							
Vitosilber		-	Х	X	X	X	Х
Vitopearlwhite		X	Х	X	Х	X	Χ
Vitographite		<u> </u>	X	X	X	X	X

Abmessungen Typ SEIA, 400 I Inhalt

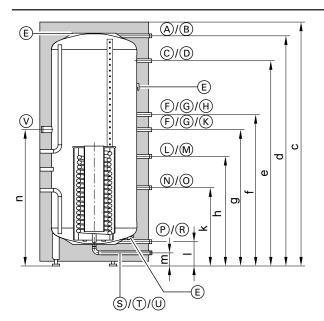


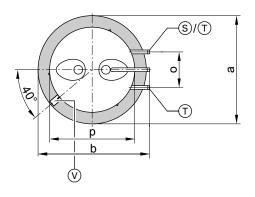


- Heizwasservorlauf 1
- (A) (B) Entlüftung
- Tauchhülse 1 für Speichertemperatursensor/Temperaturregler (C) (Innendurchmesser 16 mm)
- Heizwasservorlauf 2 **D**
- E Tauchhülse 2 für Speichertemperatursensor/Temperaturregler (Innendurchmesser 16 mm)
- F Heizwasservorlauf 3
- (G) Heizwasserrücklauf 1
- Tauchhülse 3 für Speichertemperatursensor/Temperaturregler (Innendurchmesser 16 mm)
- (K) Heizwasserrücklauf 2
- (L) Heizwasserrücklauf 3
- M Entleerung
- N Muffe für Elektro-Heizeinsatz-EHE (Rp 1½)
- Befestigung Thermometerfühler oder Befestigung für zusätzlichen Sensor (Klemmbügel)
- Tauchhülsen für Speichertemperatursensor/Temperaturregler (Innendurchmesser 16 mm)

Abmessungen Typ SEIC, 600, 750 und 950 I Inhalt

- Heizwasservorlauf 1
- $\widecheck{\mathbb{B}}$ Entlüftung

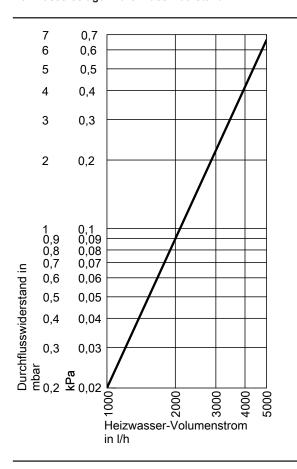



- © Heizwasservorlauf 2
- Klemmsystem 1 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- (E) Befestigung Thermometerfühler oder Befestigung für zusätzlichen Sensor (Klemmbügel)
- (F) Heizwasservorlauf 3
- G Heizwasserrücklauf 1
- (H) Klemmsystem 2 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- (K) Klemmsystem 3 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- L Heizwasserrücklauf 2
- M Klemmsystem 4 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- N Heizwasserrücklauf 3
- Klemmsystem 5 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursen-soren pro Klemmsystem
- (P) Heizwasserrücklauf 4
- (R) Entleerung
- (S) Heizwasservorlauf Solaranlage
- T Heizwasserrücklauf Solaranlage
- (U) Entlüftung Wärmetauscher Solar
- (V) Muffe für Elektro-Heizeinsatz-EHE (Rp 1½)

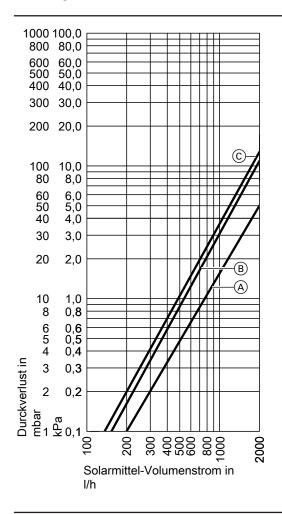
Maße Typ SEIC

Speicherinhalt		I	600	750	950
Länge (∅)	а	mm	1064	1064	1064
Breite	b	mm	1119	1119	1119
Höhe	С	mm	1645	1900	2200
	d	mm	1497	1777	2083
	е	mm	1296	1559	1864
	f	mm	926	1180	1300
	g	mm	785	1039	1159
	h	mm	598	676	752
	k	mm	355	386	386
	1	mm	155	155	155
	m	mm	75	75	75
	n	mm	910	1010	1033
	0	mm	370	370	370
Länge (∅) ohne Wärmedämmung	р	mm	790	790	790

Abmessungen Typ SESB, 750 und 950 I Inhalt


- © Heizwasservorlauf 2
- (D) Klemmsystem 1 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- (E) Befestigung Thermometerfühler oder Befestigung für zusätzlichen Sensor (Klemmbügel)
- (F) Heizwasservorlauf 3
- G Heizwasserrücklauf 1
- (H) Klemmsystem 2 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- Klemmsystem 3 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- (L) Heizwasserrücklauf 2
- M Klemmsystem 4 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- N Heizwasserrücklauf 3
- Klemmsystem 5 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursen-soren pro Klemmsystem
- P Heizwasserrücklauf 4
- (R) Entleerung
- (S) Heizwasservorlauf Solaranlage
- T Heizwasserrücklauf Solaranlage
- U Entlüftung Wärmetauscher Solar
- v) Muffe für Elektro-Heizeinsatz-EHE (Rp 1½)

- A Heizwasservorlauf 1
- (B) Entlüftung


Maße Typ SESB

Chairbariabalt			750	050
Speicherinhalt		I	750	950
Länge (∅)	а	mm	1064	1064
Breite	b	mm	1119	1119
Höhe	С	mm	1900	2200
	d	mm	1777	2083
	е	mm	1559	1864
	f	mm	1180	1300
	g	mm	1039	1159
	h	mm	676	752
	k	mm	386	386
	1	mm	155	155
	m	mm	75	75
	n	mm	1010	1033
	0	mm	370	370
Länge (🕖) ohne Wärmedämmung	р	mm	790	790

Heizwasserseitiger Durchflusswiderstand

Solarseitiger Durchflusswiderstand

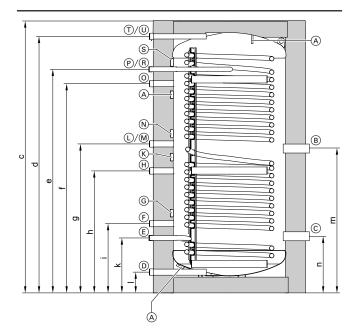
- (A) Speicherinhalt 400 I
- B Speicherinhalt 600 und 750 I
- © Speicherinhalt 950 I

4.8 Technische Angaben Vitocell 320-M, Typ SVHA

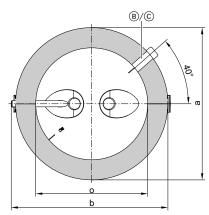
Dimensionierung von Einbringungsöffnungen

Die tatsächlichen Abmessungen des Speicher-Wassererwärmers können aufgrund von Fertigungstoleranzen geringfügig abweichen.

Hinweis zur Dauerleistung


Bei der Planung mit der angegebenen oder ermittelten Dauerleistung die entsprechende Umwälzpumpe einplanen. Nur falls die Nenn-Wärmeleistung des Wärmeerzeugers ≥ der Dauerleistung ist, wird die angegebene Dauerleistung erreicht.

Technische Daten			i			
Speicherinhalt		ı	7!	50	9	10
(AT: Tatsächlicher Wasserinhalt)			04	11	04	11
Wärmedämmung			Standard	Hocheffizient	Standard	Hocheffizient
Inhalt Wärmetauscher Trinkwasser		_	29	29	29	29
Inhalt Heizwasser			721	721	881	881
Dauerleistung bei unten aufgeführtem Heizwas-						
ser-Volumenstrom Heizwasservorlauf 1/Heizwasserrücklauf 1						
Bei Trinkwassererwärmung von 10 auf 45 °C	90 °C	kW		-*5	00	-*5
· ·	90 C			5 ^{*5}		.5 ^{*5}
und folgenden Heizwasser -Vorlauftemperaturen		l/min		9*5		9*5
leii	80 °C	kW	92,	5 ^{*5}	92,	5 ^{*5}
		l/min	37,	9*5	37,	9*5
	70 °C	kW	84	1,5	88	3,3
		l/min	34	l,8	36	5,2
	60 °C	kW	55	5,9	61	1,2
		l/min	22	2,9	25	5,1
	55 °C	kW	45	5,5	49	9,9
		l/min		3,7	20),5
– Bei Trinkwassererwärmung von 10 auf 60 °C	90 °C	kW	96	5,7	10	5,7
und folgenden Heizwasser-Vorlauftemperatu-		l/min	27	′,8	30),3
ren	80 °C	kW	77	',0	84	1,3
		l/min	22	2,1	24	1,2
	70 °C	kW	56	6,4	60),4
		l/min	16	5,3	17	7,0
Dauerleistung bei unten aufgeführtem Heizwasser-Volumenstrom Heizwasservorlauf 1/Entleerung – Bei Trinkwassererwärmung von 10 auf 45 °C	90 °C	kW	92,5* ⁵		92,5 ^{*5}	
und folgenden Heizwasser -Vorlauftemperatu-		l/min	37,9 ^{*5}		37,9 ^{*5}	
ren	80 °C	kW	92,5*5		92,5 ^{*5}	
		l/min	37,		37,9 ^{*5}	
	70 °C	kW		5 ^{*5}	92,5 ^{*5}	
		l/min		9 ^{*5}	37,9 ^{*5}	
	60 °C	kW		2,5		2,5
	00 C	l/min		7,9		7,9
	55 °C	kW		5,5		, <u>9</u> 6,5
	33 C	l/min		,,4		,,4
– Bei Trinkwassererwärmung von 10 auf 60 °C	90 °C	kW		2,0		5 ^{*5}
und folgenden Heizwasser -Vorlauftemperatu-	00 0	l/min		7,9		
ren	00.00					9*5
	80 °C	kW		7,7		7,7
	70.00	l/min		5,7		5,7
	70 °C	kW		3,5		3,5
Heizwasser-Volumenstrom für die angegebe-		l/min		7,0 ,0		7,0 ,0
nen Dauerleistungen		m³/h	3	,0	s	,0
Zulässige Temperaturen		°C	4.	10	4.	10
- Heizwasserseitig		°C °C	110 95			10
- Trinkwasserseitig		C	9	Ü	9	5
Zulässiger Betriebsdruck		har	,	,	,	2
 Heizwasserseitig 		bar		3		3
Trinkwassarsaitia		MPa		,3		,3
 Trinkwasserseitig 		bar MPa		0		0
Zulängige Gegentungs aubäute		MPa °dH		,0		,0 .0
Zulässige Gesamtwasserhärte						
		mol/m ³	3	,6	3	,6


^{*5} Höhere Volumenströme führen zu turbulenten Strömungen und Geräuschbildung.

Speicherinhalt	I	75	9′	910	
(AT: Tatsächlicher Wasserinhalt)					
Wärmedämmung		Standard	Hocheffizient	Standard	Hocheffizient
Abmessungen					
Länge a (∅)					
- Mit Wärmedämmung	mm	1064	1064	1064	1064
- Ohne Wärmedämmung	mm	790	790	790	790
Breite b	mm	1119	1119	1119	1119
Höhe c					
- Mit Wärmedämmung	mm	1900	1970	2200	2275
- Ohne Wärmedämmung	mm	1815	1815	2120	2120
Kippmaß					
 Ohne Wärmedämmung und Stellfüße 	mm	1890	1890	2165	2165
Gewicht					
- Mit Wärmedämmung	kg	164	168	187	191
- Ohne Wärmedämmung	kg	138	138	158	158
Anschlüsse (Außengewinde)					
Heizwasservorlauf und -rücklauf	R	11/4	11/4	11/4	11/2
Kaltwasser, Warmwasser	R	1	1	1	1
Entleerung	R	11/4	11/4	11/4	11/2
Wärmetauscher Trinkwasser					
Heizfläche	m ²	6,5	6,5	6,5	6,5
Bereitschaftswärmeaufwand	kWh/24	2,53	2,25	2,95	2,41
	h	,	, -	,	,
Energieeffizienzklasse		_	_	_	_
Farbe			Vitopea	rlwhite	
		oder Vitographite			

Abmessungen

- © Unterer Elektro-Heizeinsatz (Muffe Rp 1½)
- Entleerung (E)
- E Kaltwasser
- F Heizwasserrücklauf (HR) 3
- G Klemmsystem 4 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- H Heizwasserrücklauf (HR) 2
- (K) Klemmsystem 3 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- (L) Heizwasservorlauf (HV) 3
- M Heizwasserrücklauf (HR) 1
- Klemmsystem 2 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- Heizwasservorlauf (HV) 2
- (P) Warmwasser
- (R) Zirkulation (Einschraubzirkulation, Zubehör)
- (S) Klemmsystem 1 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- T Heizwasservorlauf (HV) 1
- (U) Entlüftung

- A Befestigung Thermometerfühler oder Befestigung für zusätzlichen Sensor (Klemmbügel)
- (B) Oberer Elektro-Heizeinsatz (Muffe Rp 1½)

Maße

Speicherinhalt		I	750		91	910	
Wärmedämmung			Standard	Hocheffizient	Standard	Hocheffizient	
Länge (∅)	а	mm	1064	1064	1064	1064	
Breite	b	mm	1119	1119	1119	1119	
Höhe	С	mm	1900	1970	2200	2275	
d e	d	mm	1787	1787	2093	2093	
	е	mm	1558	1558	1863	1863	
	f	mm	1458	1458	1763	1763	
	g	mm	1038	1038	1158	1158	
	h	mm	850	850	850	850	
	i	mm	483	483	483	483	
	k	mm	383	383	383	383	
	I	mm	145	145	145	145	
	m	mm	1009	1009	1035	1035	
	n	mm	395	395	395	395	
Länge ohne Wärmedämmung	0	mm	790	790	790	790	

Leistungskennzahl N_L nach DIN 4708

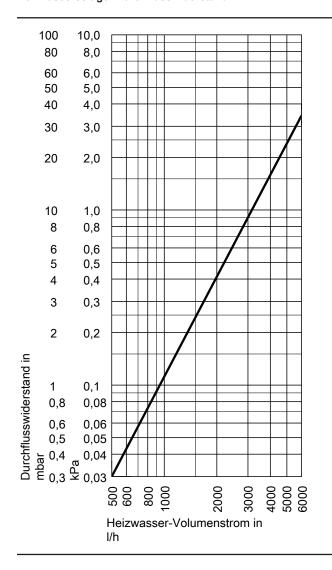
Speicherinhalt I	750		910	
Leistungskennzahl N _L bei Heizwasser-Vorlauftemperatur	HV1/HR1	HV1/E	HV1/HR1	HV1/E
90°C	>8,0	>8,0	>8,0	>8,0
80°C	>7,0	>8,0	>8,0	>8,0
70°C	5,3	>8,0	6,4	>8,0

Kurzzeitleistung während 10 min, bezogen auf die Leistungskennzahl $N_{\rm L}$

Speicherinhalt	I	75	50	9.	10
Kurzzeitleistung bei Trinkwassererwärmung von 10 auf		HV1/HR1	HV1/E	HV1/HR1	HV1/E
45 °C, mit Nachheizung					
90°C	I/10 min	379 ^{*5}	379 ^{*5}	379 ^{*5}	379 ^{*5}
80°C	I/10 min	350	379 ^{*5}	379 ^{*5}	379 ^{*5}
70°C	I/10 min	305	379 ^{*5}	335	379 ^{*5}

Max. Zapfmenge während 10 min, bezogen auf die Leistungskennzahl N_L

Speicherinhalt	I	75	0	91	10
Max. Zapfmenge bei Trinkwassererwärmung von 10 au	ıf	HV1/HR1	HV1/E	HV1/HR1	HV1/E
45 °C, mit Nachheizung					
90°C	l/min	37,9 ^{*5}	> 37,9 ^{*5}	37,9 ^{*5}	37,9 ^{*5}
80°C	l/min	35,0	> 37,9 ^{*5}	37,9 ^{*5}	37,9 ^{*5}
70°C	l/min	30,5	> 37,9 ^{*5}	33,5	37,9 ^{*5}


Zapfbare Wassermenge

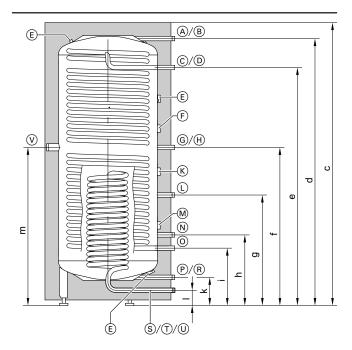
Zapfrate bei Speichervolumen auf 60 °C aufgeheizt	l/min	1	0	2	0
Zapfbare Wassermenge ohne Nachheizung		HV1/HR1	HV1/E	HV1/HR1	HV1/E
Wasser mit t = 45 °C (Mischtemperatur)					
750 I	1	210	570	100	420
910	1	290	680	140	520

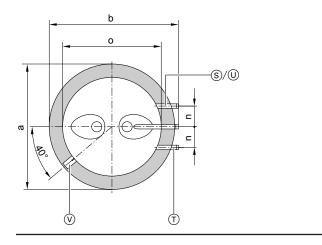
Trinkwasserseitiger Durchflusswiderstand

1000 100,0 800 80,0 600 60,0 500 50,0 400 40,0 300 30,0 200 20,0 100 10,0 8,0 80 60 50 6,0 5,0 40 4,0 30 3,0 20 2,0 10 8 1,0 0,8 0,6 0,5 6 5 4 0,4 Durckverlust in 3 0,3 0,2 mbar 1,0 kPa 300 400 500 600 800 100 2300 Trinkwasser-Volumenstrom in

Heizwasserseitiger Durchflusswiderstand

4.9 Technische Angaben Vitocell 340-M, Typ SVKC und 360-M, Typ SVSB

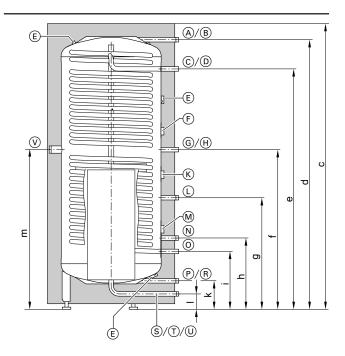

Dimensionierung von Einbringungsöffnungen

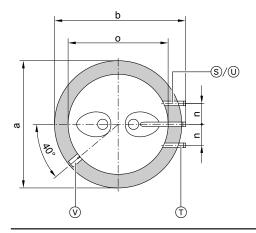

Die tatsächlichen Abmessungen des Speicher-Wassererwärmers können aufgrund von Fertigungstoleranzen geringfügig abweichen.

Technische Daten

Тур		SVKC		SVSB	
Speicherinhalt	I	750	950	750	950
AT: Tatsächlicher Wasserinhalt)					
Inhalt Wärmetauscher Solar	1	12	14	12	14
Inhalt Wärmetauscher Trinkwasser		30	30	30	30
Inhalt Heizwasser		708	906	708	906
DIN-Registernummer	·	Beantra		Beantrag	
Zulässige Temperaturen		20011110	9.	200	<u>, </u>
- Heizwasserseitig	°C	110		110	
- Trinkwasserseitig	°C	95		95	
- Solarseitig	°C	140		140	
Zulässiger Betriebsdruck					
- Heizwasserseitig	bar	3		3	
1 1012Wassorsoning	MPa	0,3		0,3	
- Trinkwasserseitig	bar	10		10	
minwassersenig	MPa			1,0	
- Solarseitig	bar	10		10	
Coldisoling	MPa	1,0		1,0	
Zulässige Gesamtwasserhärte	°dH	20		20	
Zulussige Ocsum wassernance	mol/m ³	3,6		3,6	
Abmessungen	moi/m	3,0		3,0	
_					
Länge a (∅) – Mit Wärmedämmung	mm	1064	1064	1064	1064
Ohne Wärmedämmung	mm		790	790	
Breite b	mm	790 1119	1119	1119	790 1119
Höhe c	mm	1119	1119	1119	1119
– Mit Wärmedämmung	mm	1900	2200	1900	2200
Ohne Wärmedämmung	mm	1815	2120	1815	2120
Kippmaß	mm	1013	2120	1013	2120
Ohne Wärmedämmung und Stellfüße	mm	1890	2165	1890	2165
Gewicht	111111	1090	2103	1090	2100
Mit Wärmedämmung	ka	199	222	208	231
S S S S S S S S S S S S S S S S S S S	kg	171	199	180	208
- Ohne Wärmedämmung	kg	171	199	100	200
Anschlüsse (Außengewinde) Heizwasservorlauf und -rücklauf	R	11/4	11/4	41/	11/2
	R	!		11/4	172
Kaltwasser, Warmwasser	G	1 1	1 1	1	1
Heizwasservorlauf und -rücklauf (Solar)	R	11/4	11/4	11/4	11/2
Entleerung Wärmetauscher Solar	K	1 /4	1 /4	1 /4	1 /4
Heizfläche	2	1.0	2.4	1.0	0.1
	m ²	1,8	2,1	1,8	2,1
Wärmetauscher Trinkwasser		0.7	0.7	0.7	0.7
Heizfläche	m ²	6,7	6,7	6,7	6,7
Bereitschaftswärmeaufwand	kWh/24 h	2,25	2,45	2,25	2,45
Volumen-Bereitschaftsteil V _{aux}	1	346	435	346	435
Volumen-Solarteil V _{sol}	1	404	515	404	515
Energieeffizienzklasse		_	_	-	_
Farbe		'	Vitopearlw	hite,	
			Vitograph		
			oder		
			Vitosilbe	er	

Abmessungen Typ SVKC


- (A) Heizwasservorlauf 1
- B Entlüftung


- © Warmwasser D Zirkulation (E
- D Zirkulation (Einschraubzirkulation, Zubehör)
- (E) Befestigung Thermometerfühler oder Befestigung für zusätzlichen Sensor (Klemmbügel)
- (F) Klemmsystem 1 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- (G) Heizwasservorlauf 2
- (H) Heizwasserrücklauf 1
- Klemmsystem 2 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- L Heizwasserrücklauf 2
- Klemmsystem 3 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- N Heizwasserrücklauf 3
- Kaltwasser
- P Heizwasserrücklauf 4
- R Entleerung
- (S) Heizwasservorlauf Solaranlage
- (T) Heizwasserrücklauf Solaranlage
- ① Entlüftung Wärmetauscher Solar
- V Elektro-Heizeinsatz (Muffe Rp 1½)

Maße Typ SVKC

Speicherinhalt		I	750	950
Länge (∅)	а	mm	1064	1064
Breite	b	mm	1119	1119
Höhe	С	mm	1900	2200
	d	mm	1787	2093
	е	mm	1558	1863
	f	mm	1038	1158
	g	mm	850	850
	h	mm	483	483
	i	mm	383	383
	k	mm	145	145
	1	mm	75	75
	m	mm	1009	1135
	n	mm	185	185
Länge ohne Wärmedäm-	0	mm	790	790
mung				

Abmessungen Typ SVSB

- (A) Heizwasservorlauf 1
- B Entlüftung

Dauerleistung

Dauerleistung bei Heizwasser-Vorlauftemperatur von 70 °C	kW	15	22	33
Bei Trinkwassererwärmung von 10 auf 45 °C	l/h	368	540	810
 Heizwasser-Volumenstrom (gemessen über HV₁/HR₁) 	l/h	252	378	610
Bei Trinkwassererwärmung von 10 auf 60 °C	l/h	258	378	567
 Heizwasser-Volumenstrom (gemessen über HV₁/HR₁) 	l/h	281	457	836

Hinweis zur Dauerleistung

Bei der Planung mit der angegebenen oder ermittelten Dauerleistung die entsprechende Umwälzpumpe einplanen. Nur falls die Nenn-Wärmeleistung des Wärmeerzeugers ≥ der Dauerleistung ist, wird die angegebene Dauerleistung erreicht.

- c) Warmwasser
- D Zirkulation (Einschraubzirkulation, Zubehör)
- © Befestigung Thermometerfühler oder Befestigung für zusätzlichen Sensor (Klemmbügel)
- (F) Klemmsystem 1 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- (G) Heizwasservorlauf 2
- (H) Heizwasserrücklauf 1
- Klemmsystem 2 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- L Heizwasserrücklauf 2
- Klemmsystem 3 zur Befestigung von Tauchtemperatursensoren am Speichermantel mit Aufnahmen für 3 Tauchtemperatursensoren pro Klemmsystem
- N Heizwasserrücklauf 3
- Kaltwasser
- P Heizwasserrücklauf 4
- R Entleerung
- (S) Heizwasservorlauf Solaranlage
- (T) Heizwasserrücklauf Solaranlage
- ① Entlüftung Wärmetauscher Solar
- V Elektro-Heizeinsatz (Muffe Rp 1½)

Maße Tvp SVSB

wase typ SvSD				
Speicherinhalt		I	750	950
Länge (∅)	а	mm	1064	1064
Breite	b	mm	1119	1119
Höhe	С	mm	1900	2200
	d	mm	1787	2093
	е	mm	1558	1863
	f	mm	1038	1158
	g	mm	850	850
	h	mm	483	483
	i	mm	383	383
	k	mm	145	145
	1	mm	75	75
	m	mm	1009	1135
	n	mm	185	185
Länge ohne Wärmedäm- mung	0	mm	790	790

Leistungskennzahl N_L nach DIN 4708

Speicherinhalt	I	750	950
Leistungskennzahl N _L bei 70 °C Heizwasser-Vorlauftemperatur			
In Abhängigkeit der zugeführten Wärmeleistung des Heizkessels Q _D			
15 kW		2,00	3,00
18 kW		2,25	3,20
22 kW		2,50	3,50
27 kW		2,75	4,00
33 kW		3,00	4,60

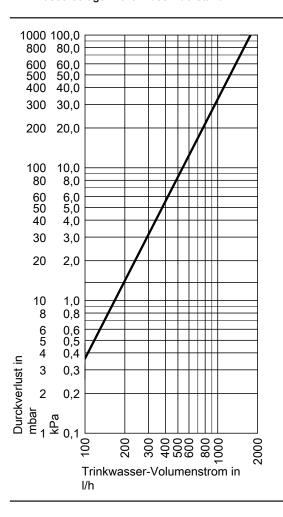
- Die Leistungskennzahl N_L ändert sich mit der Speicherbevorratungstemperatur T_{sp} .
- Speicherbevorratungstemperatur T_{sp} = Kaltwasser-Einlauftemperatur + 50 K +5 K/-0 K

Richtwerte zur Leistungskennzahl N_L

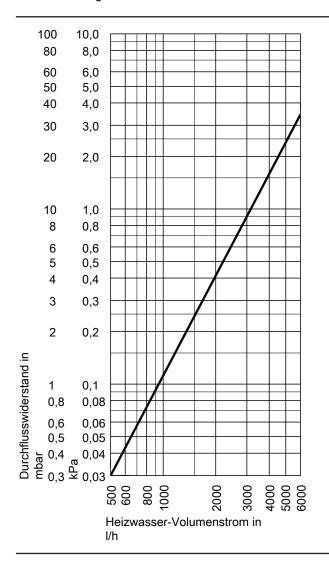
- \blacksquare T_{sp} = 60 °C \rightarrow 1,0 × N_L
- \blacksquare T_{sp} = 55 °C \rightarrow 0,75 × N_L
- \blacksquare T_{sp} = 50 °C \rightarrow 0,55 × N_L
- \blacksquare T_{sp} = 45 °C \rightarrow 0,3 × N_L

Kurzzeitleistung während 10 min, bezogen auf die Leistungskennzahl N_L

Speicherinhalt	I	750	950
Kurzzeitleistung bei 70 °C Heizwasser-Vorlauftemperatur und Trinkwassererwär-			
mung von 10 auf 45 °C			
In Abhängigkeit der zugeführten Wärmeleistung des Heizkessels Q _D			
15 kW	I/10 min	190	230
18 kW	I/10 min	200	236
22 kW	I/10 min	210	246
27 kW	I/10 min	220	262
33 kW	I/10 min	230	280

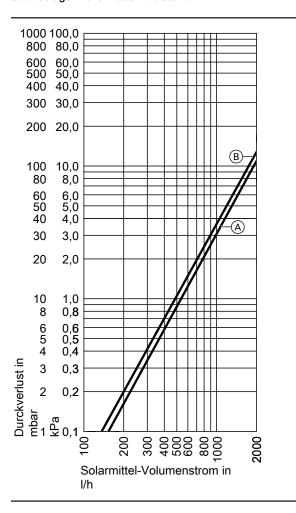

Max. Zapfmenge während 10 min, bezogen auf die Leistungskennzahl N_L

Speicherinhalt	I	750	950
Max. Zapfmenge bei 70 °C Heizwasser-Vorlauftemperatur und Trinkwassererwär-			
mung von 10 auf 45 °C, mit Nachheizung			
In Abhängigkeit der zugeführten Wärmeleistung des Heizkessels Q _D			
15 kW	l/min	19,0	23,0
18 kW	l/min	20,0	23,6
22 kW	l/min	21,0	24,6
27 kW	l/min	22,0	26,2
33 kW	l/min	23,0	28,0


Zapfbare Wassermenge

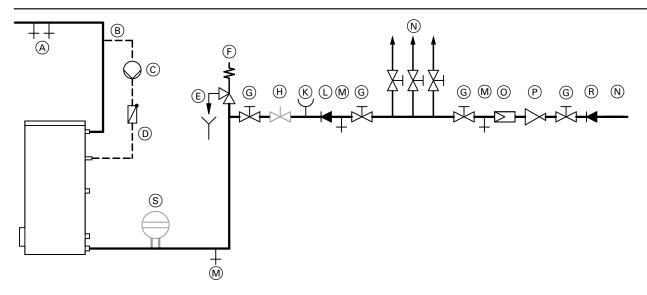
Zapfrate bei Speichervolumen auf 60 °C aufgeheizt	l/min	10	20
Zapfbare Wassermenge ohne Nachheizung			
Wasser mit t = 45 °C (Mischtemperatur)			
750 I	I	255	190
950 I	I	331	249

Trinkwasserseitiger Durchflusswiderstand


Heizwasserseitiger Durchflusswiderstand

Hinweis

Höhere Volumenströme führen zu turbulenten Strömungen und Geräuschbildung.


Solarseitiger Durchflusswiderstand

- A Speicherinhalt 750 IB Speicherinhalt 950 I

4.10 Trinkwasserseitiger Anschluss Speicher-Wassererwärmer

Anschluss nach DIN 1988

Beispiel: Vitocell 100-V

- (A) Warmwasser
- B Zirkulationsleitung

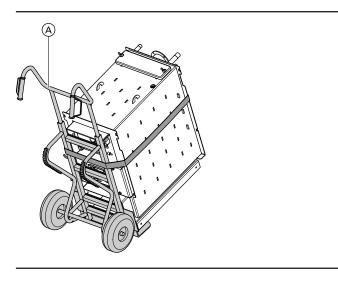
- © Zirkulationspumpe
- Rückschlagklappe, federbelastet
- E Ausblaseleitung mit sichtbarer Mündung
- (F) Sicherheitsventil
- G Absperrventil
- Durchflussregulierventil
 (Empfehlung: Einbau und Einstellen des maximalen Wasserdurchflusses entsprechend der 10-Minuten-Leistung des Speicher-Wassererwärmers.)
- (K) Manometeranschluss
- Rückflussverhinderer
- M Entleerung
- N Kaltwasser
- Trinkwasserfilter*6
- P Druckminderer DIN1988-200: 2012-05
- (R) Rückflussverhinderer/Rohrtrenner
- (s) Membran-Druckausdehnungsgefäß, trinkwassergeeignet

Das Sicherheitsventil muss eingebaut werden.

Empfehlung: Sicherheitsventil über Speicheroberkante montieren. Dadurch braucht der Speicher-Wassererwärmer bei Arbeiten am Sicherheitsventil nicht entleert werden.

5784189

^{*6} Nach DIN 1988-200 ist bei Anlagen mit Rohrleitungen aus Metall ein Trinkwasserfilter einzubauen. Bei Kunststoffleitungen sollte nach DIN 1988 und unserer Empfehlung auch ein Trinkwasserfilter eingebaut werden, damit kein Schmutz in die Trinkwasseranlage eingetragen wird.


Installationszubehör

5.1 Zubehör zum Heizkessel

Transport- und Einbringhilfe

Best.-Nr. 9521645

Die Transport- und Einbringhilfe A ist für den Flurtransport und den Transport über Treppen geeignet.

A Transport- und Einbringhilfe

Abgas-Partikelabscheider

Best.-Nr. ZK04649

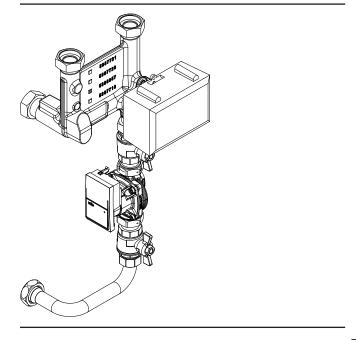
Elektrostatischer Filter zum Einbau in das Abgasrohr

- Für Ø 130 mm Abgasrohr
- Länge 500 mm

Abgas-Partikelabscheider

Best.-Nr. ZK04650

Elektrostatischer Filter zum Einbau in das Abgasrohr


- Für Ø 150 mm Abgasrohr
- Länge 500 mm

Rücklauftemperaturanhebung

Für Anlagen mit Heizwasser-Pufferspeicher **Best.-Nr. 7172808**, DN 25, für Heizkessel bis 30 kW **Best.-Nr. 7172809**, DN 32, für Heizkessel 34,9 und 45 kW

Bestehend aus:

- Thermometer zur Anzeige der Vorlauf-/Rücklauftemperatur
- Thermisches Regelventil
- Wärmedämmung
- Rückschlagklappe
- Hocheffizienz-Umwälzpumpe

Rohrverschraubung

Best.-Nr. 7424592

Für Rücklauftemperaturanhebung DN 25

■ 1 Satz mit 2 Stück (2-mal erforderlich)

■ G 1½ x R 1

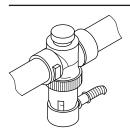
Best.-Nr. 7424591

Für Rücklauftemperaturanhebung DN 32

- 1 Satz mit 2 Stück (2-mal erforderlich)
- G 2 x R 11/4

Übergangseinheit

Best.-Nr. 7159411


Zum Anschluss der Rücklauftemperaturanhebung an die Divicon

- 2 Übergangsstücke R 1½ (mit Versatz)
- Dichtungen

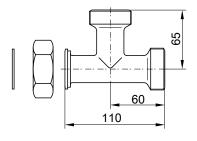
Thermische Ablaufsicherung

Best.-Nr. 7441729, Ansprechtemperatur 100 °C:

Zum Anschluss an den Sicherheitswärmetauscher des Heizkessels für eine Kessel-/Puffertemperatur **über 80 °C**.

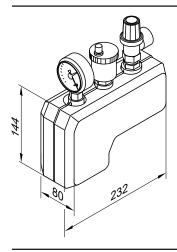
Der Heizkessel ist entsprechend der Anforderungen der EN 303-5 mit einem Sicherheitswärmetauscher ausgeführt, der bauseits über ein thermisches Ablaufsicherungs-Ventil an das Trinkwassernetz angeschlossen werden muss, um im Störfall eine Notkühlung des Heizkessels zu gewährleisten.

Anschlusseinheit Pufferspeicher


Best.-Nr. 7159406

G 1½ x 1½ x 1½

Zur Einbindung des Heizwasser-Pufferspeichers in den Heizkreis **vor** der Modular-Divicon oder **vor** dem Verteilerbalken


Bestehend aus:

- 2 T-Stücke mit Überwurfmuttern
- Dichtungen

Kleinverteiler

Best.-Nr. Z006950 für Heizkessel bis 30 kW **Best.-Nr. Z006951** für Heizkessel 34,9 und 45 kW

Bestandteile:

- Sicherheitsgruppe
- Wärmedämmung

Aschebox

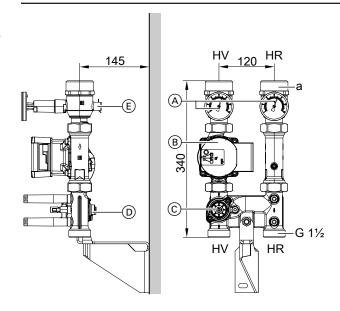
Best.-Nr. ZK02452

Für den sauberen Transport der Asche zum Müllbehälter

- Inhalt 18 I
- Aus verzinktem Stahlblech
- Mit Abdeckung

Divicon Heizkreis-Verteilung

Aufbau und Funktion


- \blacksquare Lieferbar in Anschlussgrößen R $^{3}\!\!/_{4},$ R 1 und R $11\!\!/_{\!4}$
- Mit Heizkreispumpe, Rückschlagklappe, Kugelhähnen mit integrierten Thermometern und 3-Wege-Mischer oder ohne Mischer
- Schnelle und einfache Montage durch vormontierte Einheit und kompakte Bauweise
- Geringe Abstrahlverluste durch formschlüssige Wärmedämmschalen
- Niedrige Stromkosten und exaktes Regelverhalten durch den Einsatz von Hocheffizienz-Umwälzpumpen und optimierter Mischer-
- Direkt anschließbar an den Heizkessel durch Rohrgruppe (Einzelmontage) oder Wandmontage sowohl einzeln als auch mit 2- oder 3-fach Verteilerbalken
- K_V-Werte des Mischers in 5 Stufen einstellbar

Die Divicon mit Mischer ist in verschiedenen Kombinationen folgender Ausstattungskomponenten passend zum jeweiligen Wärmeerzeuger verfügbar:

- Hocheffizienz-Umwälzpumpen Wilo oder Grundfos
- Erweiterungssätze Mischer zum Anschluss an PlusBus oder KM-BUS
- Ohne Erweiterungssatz zum direkten Anschluss des Mischer-Motors an die Regelung des Wärmeerzeugers
- Vorlauftemperatursensoren NTC 10 kΩ oder Pt1000

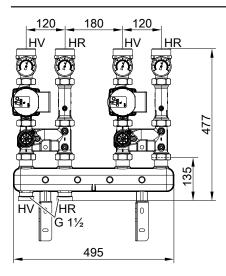
Hinweis

Bei einer Divicon mit Mischer befindet sich der Mischer-Motor im Lieferumfang. Dieser Mischer-Motor wird direkt auf dem Mischer montiert. Best.-Nr. in Verbindung mit verschiedenen Ausstattungskomponenten: Siehe Viessmann Preisliste.

Divicon mit Mischer: Wandmontage, Darstellung ohne Wärmedämmung, Mischer-Motor und Erweiterungssatz Mischer

- HR Heizungsrücklauf
- HV Heizungsvorlauf

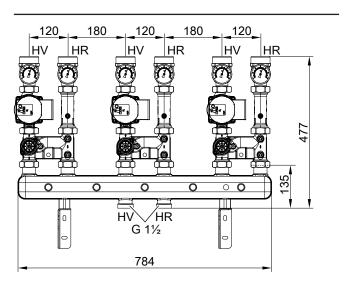
- (A) Kugelhähne mit Thermometer (als Bedienelement)
- B Umwälzpumpe
- © Mischer
- \bigcirc Einstellhebel für K_V -Wert des Mischers mit Einstellskala gemäß folgender Tabelle
- E Tauchhülse für Vorlauftemperatursensor


Technische Angaben Divicon mit Mischer

Anschlüsse Heizkreis	R 3/4	R 1	R 11/4
Nennweite	DN 20	DN 25	DN 32
Max. Volumenstrom	1,0 m ³ /h	1,5 m ³ /h	2,5 m ³ /h
a (innen)	Rp 3/4	Rp 1	Rp 11/4
a (außen)	G 11/4	G 11/4	G 2
Einstellbare K _V -Werte für Mi-	3,1	4,0	4,7
scher: Werte in m³/h bei ei-	3,7	4,5	5,1
nem Druckverlust von 1 bar	4,5	5,1	5,6
(0,1 MPa)	4,8	5,5	5,8
	4,9	5,6	5,9
Max. Betriebsdruck	3 bar	3 bar	3 bar
	(0,3 MPa)	(0,3 MPa)	(0,3 MPa)
Max. Betriebstemperatur bei 40 °C Umgebungstemperatur	80 °C	80 °C	80 °C
Zul. Umgebungstemperatur			
- Betrieb		0 bis 40 °C	
- Lagerung	-	;	
Elektrische Werte			
 Nennspannung 	230 V	230 V	230 V
- Nennfrequenz	50 Hz	50 Hz	50 Hz
 Anschlussleistung mit Um- 	43 W	43 W	60 W
wälzpumpe Wilo			
 Anschlussleistung mit Um- 	39 W	39 W	52 W
wälzpumpe Grundfos			
 Anschlussleistung Erweite- 	6 W	6 W	6 W
rungssatz			
Mischer-Motor			
– Тур		SBE ARA56	
Fahrzeit	120 s	120 s	120 s
Gewicht mit Umwälzpumpe			
Wilo			
 Ohne Erweiterungssatz Mischer 	6,9 kg	6,9 kg	7,4 kg
Mit Erweiterungssatz Mi-	8,1 kg	8,1 kg	8,7 kg
scher	0,1 kg	0,1 kg	0,7 kg
Gewicht mit Umwälzpumpe			
Grundfos			
 Ohne Erweiterungssatz Mi- 	7,0 kg	7,0 kg	7,4 kg
scher			
 Mit Erweiterungssatz Mischer 	8,2 kg	8,2 kg	8,7 kg

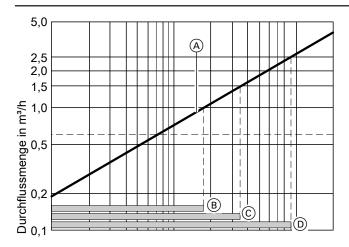
Hinweis

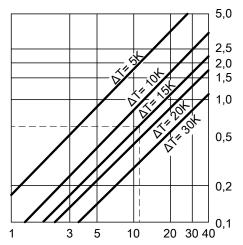
Druckverlustkurven der Divicon für die verschiedenen K_V -Werte des Mischers: Siehe Kapitel "Druckverlustdiagramme".


Montagebeispiel: Divicon mit 2-fach Verteilerbalken

Darstellung ohne Wärmedämmung

HR Heizungsrücklauf HV Heizungsvorlauf


Montagebeispiel: Divicon mit 3-fach Verteilerbalken


Darstellung ohne Wärmedämmung

HR Heizungsrücklauf HV Heizungsvorlauf

Ermittlung der erforderlichen Nennweite

Regelverhalten des Mischers

Wärmeleistung des Heizkreises in kW

(A) Divicon mit Mischer

In den gekennzeichneten Betriebsbereichen (B) bis (D) ist das Regelverhalten des Mischers der Divicon optimal:

Divicon mit Mischer DN 20 (R 3/4) Einsatzbereich: 0 bis 1,0 m 3/h

Heizkreis für Heizkörper mit einer Wärmeleistung Q = 11,6 kW Heizsystemtemperatur 75/60 °C (ΔT = 15 K)

- Spezifische Wärmekapazität
- Massestrom ṁ
- Wärmeleistung
- Durchflussvolumenstrom

$$\dot{Q} = \dot{m} + c \cdot \Delta T \qquad c = 1,163 \ \frac{Wh}{kg \cdot K} \qquad \dot{m} \ \triangleq \dot{v} \ (1 \ kg \approx 1 \ dm^3)$$

$$\dot{V} = \frac{\dot{Q}}{c \cdot \Delta T} = \frac{11600 \text{ W} \cdot \text{kg} \cdot \text{K}}{1,163 \text{ Wh} \cdot (75-60) \text{ K}} = 665 \frac{\text{kg}}{\text{h}} \triangleq 0,665 \frac{\text{m}^3}{\text{h}}$$

Mit dem Wert v den kleinstmöglichen Mischer innerhalb der Einsatzgrenze auswählen.

Ergebnis des Beispiels: Divicon mit Mischer DN 20 (R 3/4)

Kennlinien der Umwälzpumpen

Die Restförderhöhe der Umwälzpumpe ergibt sich aus der Differenz der gewählten Pumpenkennlinie und der Druckverlustkurve der jeweiligen Divicon sowie ggf. weiterer Bauteile (Rohrgruppe, Verteiler usw.).

In den folgenden Pumpenkennlinien sind auch die Druckverlustkurven der verschiedenen Divicon für den jeweiligen max. K_{VS}-Wert des Mischers eingezeichnet.

Anschlüsse Heizkreis	R 3/4	R 1	R 11/4
Nennweite	DN 20	DN 25	DN 32
Max. Volumenstrom	1,0 m ³ /h	1,5 m ³ /h	2,5 m ³ /h

Beispiel:

Durchflussvolumenstrom $\dot{V} = 0,665 \text{ m}^3/\text{h}$

- (c) Divicon mit Mischer DN 25 (R 1) Einsatzbereich: 0 bis 1,5 m 3/h
- Divicon mit Mischer DN 32 (R 11/4) Einsatzbereich: 0 bis 2,5 m 3/h

Gewählt:

- Divicon mit Mischer DN 20
- Umwälzpumpe Wilo PARA 25/6, Betriebsweise Differenzdruck variabel und eingestellt auf maximale Förderhöhe
- Förderstrom 0,7 m³/h

Förderhöhe gemäß Pumpen-

kennlinie: 48 kPa Widerstand Divicon: 3,5 kPa

Restförderhöhe: 48 kPa - 3,5 kPa = 44,5 kPa.

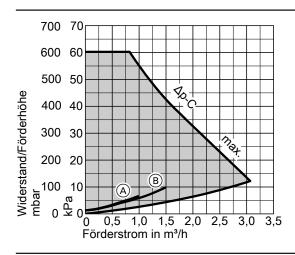
Hinweis

Für weitere Baugruppen (Rohrgruppe, Verteiler usw.) muss der Druckverlust ebenfalls ermittelt und von der Restförderhöhe abgezogen werden.

Differenzdruckgeregelte Heizkreispumpen

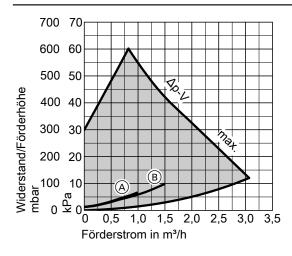
Gemäß Gebäudeenergiegesetz (GEG) sind Umwälzpumpen in Zentralheizungsanlagen nach den technischen Regeln zu dimensionie-

Die Ökodesign-Richtlinie 2009/125/EG fordert seit 1. Januar 2013 europaweit den Einsatz von hocheffizienten Umwälzpumpen, falls diese Pumpen nicht im Wärmeerzeuger eingebaut sind.


Planungshinweis

Der Einsatz differenzdruckgeregelter Heizkreispumpen setzt Heizkreise mit variablem Förderstrom voraus, z. B. Einrohr- und Zweirohrheizungen mit Thermostatventilen, Fußbodenheizungen mit Thermostat- oder Zonenventilen.

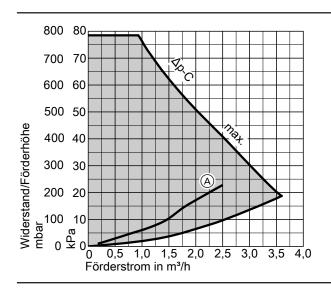
Wilo PARA 25/6


- Besonders stromsparende Hocheffizienz-Umwälzpumpe
- Energieeffizienzindex EEI ≤ 0,20

Betriebsweise: Differenzdruck konstant

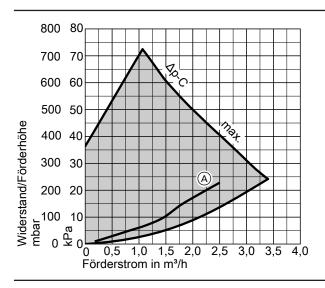
- $\ \, \triangle \,$ Druckverlustkurve Divicon mit Mischer DN 20 mit K $_{\rm VS}$ 4,9
- (B) Druckverlustkurve Divicon mit Mischer DN 25 mit K_{VS} 5,6

Betriebsweise: Differenzdruck variabel



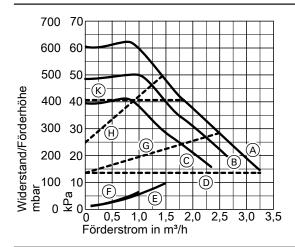
- (A) Druckverlustkurve Divicon mit Mischer DN 20 mit K_{VS} 4,9
- B Druckverlustkurve Divicon mit Mischer DN 25 mit K_{VS} 5,6

Wilo PARA 25/8


■ Energieeffizienzindex EEI ≤ 0,20

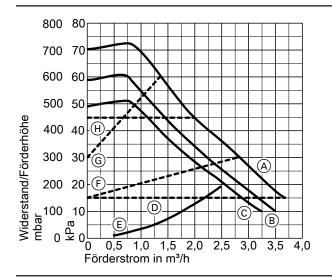
Betriebsweise: Differenzdruck konstant

A Druckverlustkurve Divicon mit Mischer DN 32 mit K_{VS} 5,9


Betriebsweise: Differenzdruck variabel

 $\ \, \triangle \,\,$ Druckverlustkurve Divicon mit Mischer DN 32 mit K_{VS} 5,9

Grundfos UPM3S 25-60

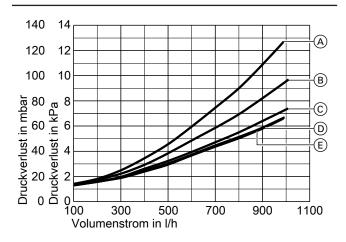

- Mit Displayanzeige der Leistungsaufnahme
- Mit Autoadapt-Funktion (automatische Anpassung an das Rohrleitungssystem)
- Energieeffizienzindex EEI ≤ 0,20

- Stufe 3 (A)
- **B** Stufe 2
- Stufe 1 (C)
- **D** Min. Konstantdruck
- Druckverlustkurve Divicon mit Mischer DN 25 mit K_{VS} 5,6 E
- Druckverlustkurve Divicon mit Mischer DN 20 mit K_{VS} 4,9 (F)
- (G) Min. Proportionaldruck
- Max. Proportionaldruck (H)
- Max. Konstantdruck

Grundfos UPM3S 25-70

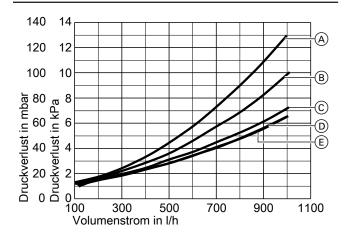
- Mit Displayanzeige der Leistungsaufnahme
- Mit Autoadapt-Funktion (automatische Anpassung an das Rohrleitungssystem)
- Energieeffizienzindex EEI ≤ 0,20

- Stufe 3
- Stufe 2


- Min. Konstantdruck (D)
- E Druckverlustkurve Divicon mit Mischer DN 32 mit K_{VS} 5,9
- F Min. Proportionaldruck
- (G) Max. Proportionaldruck
- Max. Konstantdruck

Druckverlustdiagramme

Hinweis

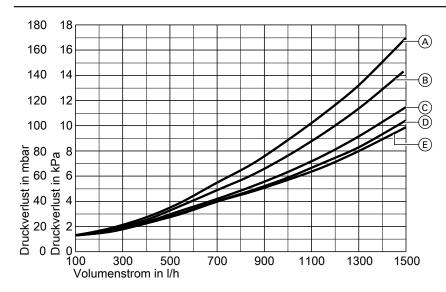

- Alle Diagramme beziehen sich auf die jeweilige Divicon mit Mischer, ohne Verteilerbalken.
- Jede einzelne Kennlinie gibt die Druckverlustkurve für den am Einstellhebel gewählten K_V-Wert des Mischers an.

Divicon mit Mischer DN 20

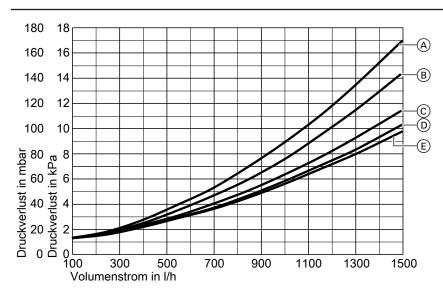
Mit Umwälzpumpe Wilo PARA 25/6

- A K_V 3,1
- B K_V 3,7
- © K_V 4,5
- D K_V 4,8
- E K_{VS} 4,9

Mit Umwälzpumpe Grundfos UPM3S 25-60


- \bigcirc K_V 3,1
- (B) K_V 3,7

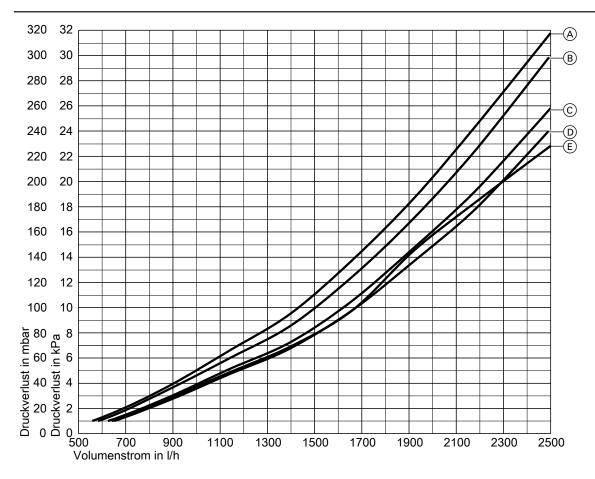
- \bigcirc K_V 4,5
- D K_V 4,8
- E K_{VS} 4,9


Divicon mit Mischer DN 25

Mit Umwälzpumpe Wilo PARA 25/6

- \bigcirc $K_V 4,0$
- B $K_V 4,5$
- \bigcirc $K_V 5,1$

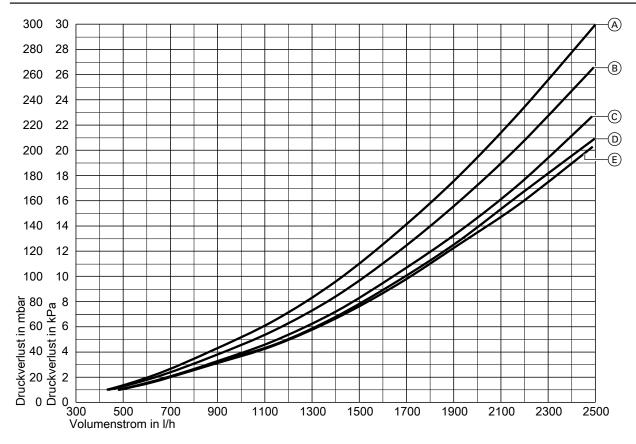
- E K_{VS} 5,6



Mit Umwälzpumpe Grundfos UPM3S 25-60

- B K_V 4,5
- © K_V 5,1

- D K_V 5,5
- E K_{VS} 5,6


Divicon mit Mischer DN 32

Mit Umwälzpumpe Wilo PARA 25/8

- \bigcirc K_V 4,7
- B K_V 5,1
- © K_V 5,6

- D K_V 5,8
- € K_{VS} 5,9

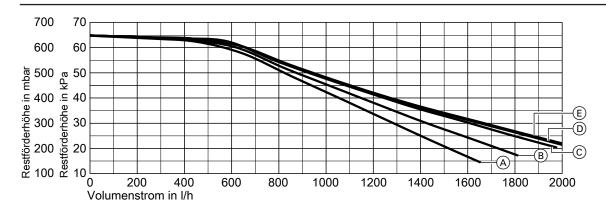
Mit Umwälzpumpe Grundfos UPM3K 25-70

 \bigcirc K_V 4,7

B K_V 5,1

© K_V 5,6

D K_V 5,8

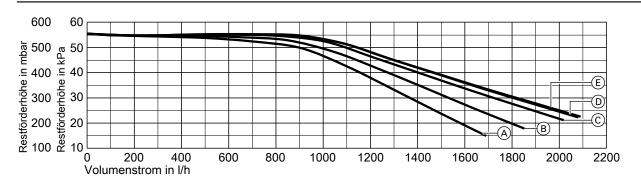

E K_{VS} 5,9

Restförderhöhen

Hinweis

Alle Diagramme beziehen sich auf die jeweilige Divicon mit Mischer, ohne Verteilerbalken.

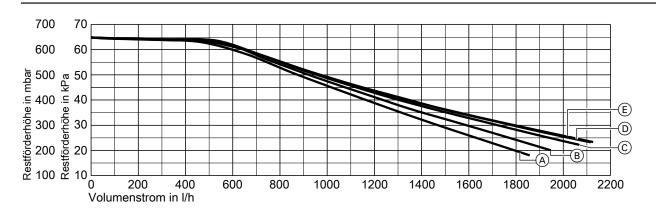
Divicon mit Mischer DN 20


Mit Umwälzpumpe Wilo PARA 25/6

68 (A) K_V 3,1 (B) K_V 3,7

© K_V 4,5

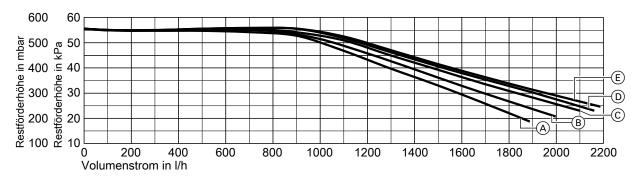
- \bigcirc K_V 4,8
- E K_{VS} 4,9



Mit Umwälzpumpe Grundfos UPM3S 25-60

- A K_V 3,1
- (B) K_V 3,7
- © K_V 4,5

- D K_V 4,8
- E K_{VS} 4,9


Divicon mit Mischer DN 25

Mit Umwälzpumpe Wilo PARA 25/6

- A K_V 4,0
- B K_V 4,5
- © K_V 5,1

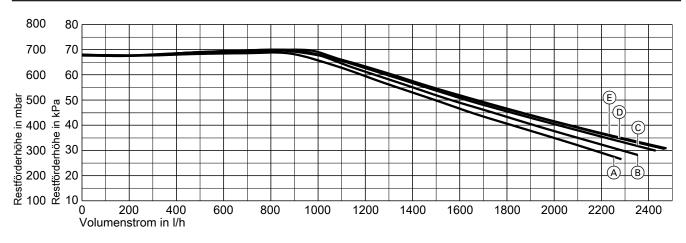
- D K_V 5,5
- E K_{VS} 5,6

Mit Umwälzpumpe Grundfos UPM3S 25-60

- \bigcirc K_V 4,0
- B K_V 4,5

© $K_V 5,1$

- D K_V 5,5
- $\stackrel{\textstyle (E)}{}$ K_{VS} 5,6

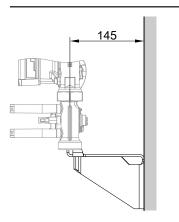

Divicon mit Mischer DN 32

Mit Umwälzpumpe Wilo PARA 25/8

- B K_V 5,1
- © K_V 5,6

- D K_V 5,8
- E K_{VS} 5,9

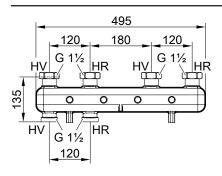
Mit Umwälzpumpe Grundfos UPM3K 25-70


- \bigcirc $K_V 4,7$
- B K_V 5,1
- © K_V 5,6

- D K_V 5,8
- € K_{VS} 5,9

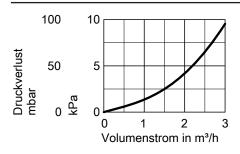
Wandbefestigung für einzelne Divicon

Best.-Nr. 7465894


Mit Schrauben und Dübeln

Verteilerbalken für 2 Divicon

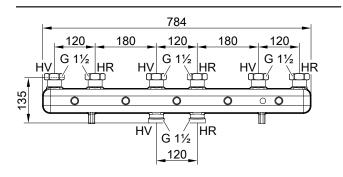
Best.-Nr. 7986761


- Mit Wärmedämmung
- Anbau an die Wand mit separater Wandbefestigung (Zubehör)
- Verbindung zwischen Heizkessel und Verteilerbalken bauseits

HV Heizwasservorlauf

HR Heizwasserrücklauf

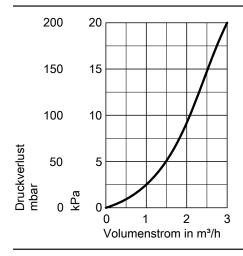
Druckverlustdiagramm


Hinweis

Die Kennlinie bezieht sich nur auf 1 Stutzenpaar (HV/HR) für den Anschluss der Divicon.

Verteilerbalken für 3 Divicon

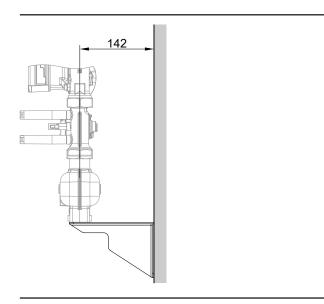
Best.-Nr. 7986762


- Mit Wärmedämmung
- Anbau an die Wand mit separater Wandbefestigung (Zubehör)
- Verbindung zwischen Heizkessel und Verteilerbalken bauseits

HV Heizwasservorlauf

HR Heizwasserrücklauf

Druckverlustdiagramm


Hinweis

Die Kennlinie bezieht sich nur auf 1 Stutzenpaar (HV/HR) für den Anschluss der Divicon.

Wandbefestigung für Verteilerbalken

Best.-Nr. 7465439

Mit Schrauben und Dübeln

Leitungssatz mit Stecker 40 und 145

Best.-Nr. 7424960

Zur Verbindung der Mischerelektroniken bei 2 Heizkreisen mit Mischer

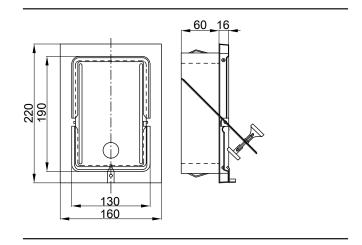
Die Anschlussleitung aus dem Lieferumfang der Erweiterungssätze mit Mischer wird gegen den Leitungssatz mit Stecker 40 und 145 ausgetauscht.

5.2 Zubehör für die Abgasabführung

Kesselanschluss-Stück

Best.-Nr. 7539452 für Vitoligno 150-S, 17 und 23 kW

- Systemgröße Ø 130 mm
- Übersteckend, konisch


Best.-Nr. 7539478 für Vitoligno 150-S, 30 bis 45 kW

- Systemgröße Ø 150 mm
- Übersteckend, konisch

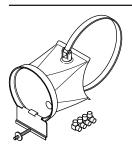
Zugbegrenzer

Best.-Nr. 7957187

Zugbegrenzer zum Einbau in die Revisionstür am Schornstein

Nebenluftvorrichtung (Zugbegrenzer für Einbau in den Schornstein)

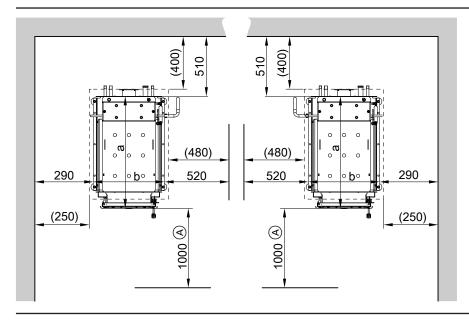
Best.-Nr. 7249379


VITOLIGNO 150-S

Der Einbau der Nebenluftvorrichtung ist erforderlich, um die vorgegebenen Zugbedingungen innerhalb der Abgasanlage sicherzustel-

Nebenluftvorrichtung (Zugbegrenzer für Einbau in das Verbindungsstück)

Best.-Nr. 7264701



Alternativ zur Nebenluftvorrichtung für den Einbau in den Schornstein kann diese Nebenluftvorrichtung eingesetzt werden, um die vorgegebenen Zugbedingungen innerhalb der Abgasanlage sicher-

Planungshinweise

6.1 Aufstellung

Mindestabstände

(A) Erforderlicher Abstand zum Reinigen, Anheizen und Nachlegen

Nenn-Wärmeleis-	kW	17	23	30	34,9	45
tung Maß a						
Maß a	mm	99	90	990	10	30
Maß b	mm	6:	30	630	73	30
Mindestraumhöhe	mm	17	00	2000	22	200

Nenn-Wärmeleis-	kW	17	23	30	34,9	45
tung						
Empfohlene	mm	1900		2100	2300	
Raumhöhe						

Maße in Klammern: Abstände mit Wärmedämmung

Hinwais

Die angegebenen Wandabstände sind für Montage- und Wartungsarbeiten erforderlich.

Seitlicher Abstand zur Wand

Bei einem Wandabstand von 250 mm (nach Anbau der Verkleidungsbleche) lassen sich die Türen komplett, bis 125° öffnen.

Der angegebene Wandabstand von 440 mm kann bis auf 100 mm reduziert werden, damit noch eine gute Hinterlüftung zwischen Wand und Kessel gewährleistet ist.

Bei einem Wandabstand von 100 mm lassen sich die Türen nicht mehr bis 125° öffnen.

Anforderungen an den Aufstellraum

- Keine Luftverunreinigungen durch Halogenkohlenwasserstoffe (z. B. enthalten in Sprays, Farben, Lösungs- und Reinigungsmitteln)
- Kein starker Staubanfall
- Keine hohe Luftfeuchtigkeit
- Frostsicher und gut belüftet

Der Heizkessel darf in Räumen, in denen mit Luftverunreinigungen durch Halogenkohlenwasserstoffe zu rechnen ist, (z. B. Friseurbetriebe, Druckereien, chemischen Reinigungen, Labors) nur aufgestellt werden, falls ausreichende Maßnahmen ergriffen werden, die für die Heranführung unbelasteter Verbrennungsluft sorgen.

In Zweifelsfällen bitten wir, mit uns Rücksprache zu halten. Werden diese Hinweise nicht beachtet, entfällt für auftretende Kesselschäden, die auf einer dieser Ursachen beruhen, die Gewährleistung.

Hinweise zur Aufstellung für Feuerstätten bis 50 kW

Grundsätzlich dürfen Feuerstätten mit einer Leistung bis 50 kW nicht in Treppenräumen, Aufenthaltsräumen, Fluren und Garagen aufgestellt werden. Weiterhin sollte eine Aufstellung in Räumen mit Lüftungsanlagen, Ventilatoren, Dunstabzugshauben, Abluftanlagen (z. B. Abluft Wäschetrockner) vermieden werden. Es muss sichergestellt sein, dass ein gleichzeitiger Betrieb durch Sicherheitseinrichtungen vermieden wird und die Abgasführung durch geeignete Sicherheitseinrichtungen überwacht wird.

Zu brennbaren Baustoffen und Einbaumöbeln ist ein Abstand von min. 0,4 m einzuhalten, sodass Oberflächentemperaturen von mehr als 85 °C nicht erreicht werden.

Bei Heizkessel für Holzpellets: Zum Pelletlagerraum muss ein Abstand von min. 1 m eingehalten oder ein Strahlungsblech vorgesehen werden.

Die Feuerstätte darf nicht auf brennbaren Fußböden betrieben werden. Nicht brennbare Bodenbeläge müssen sich nach vorn min. 50 cm und seitlich min. 30 cm über die Öffnung der Feuerstätte hinaus erstrecken.

Eine Verbrennungsluftversorgung der Feuerstätte von außen (Öffnung min. 150 cm² oder 2 x 75 cm²) ist vorzusehen.

6.2 Richtwerte für die Wasserbeschaffenheit

Die Lebensdauer eines jeden Wärmeerzeugers sowie der gesamten Heizungsanlage wird von den Wasserverhältnissen beeinflusst. Die Kosten für eine Wasseraufbereitung sind in jedem Fall niedriger als die Beseitigung von Schäden an der Heizungsanlage. Die Einhaltung der nachfolgend genannten Anforderungen ist Voraussetzung unserer Gewährleistungsverpflichtungen. Die Gewährleistung erstreckt sich nicht auf Korrosions- und Kesselsteinschäden.

Nachfolgend sind die wesentlichen Anforderungen an die Wasserbeschaffenheit zusammengefasst.

Für die Befüllung kann bei Viessmann eine chemische Wasseraufbereitung bestellt werden.

Heizungsanlagen mit bestimmungsgemäßen Betriebstemperaturen bis 100 °C (VDI 2035)

Für Heizungsanlagen verwendetes Wasser muss den chemischen Werten der Trinkwasserverordnung entsprechen. Falls Brunnenwasser oder ähnliches verwendet werden, ist vor Befüllen der Anlage die Eignung zu prüfen.

Es muss vermieden werden, dass sich Steinbelag (Calciumcarbonat) übermäßig an den Heizflächen anlagert. Für Heizungsanlagen mit Betriebstemperaturen bis 100 °C gilt die Richtlinie VDI 2035 Blatt 1 "Vermeidung von Schäden in Warmwasser-Heizungsanlagen - Steinbildung in Trinkwassererwärmungs- und Warmwasser-Heizungsanlagen" mit folgenden Richtwerten. Weitere Informationen siehe Erläuterungen der Richtlinie VDI 2035.

Gesamtheizleistung in	> 50 bis	> 200 bis	> 600
kW	≤ 200	≤ 600	
Summe Erdalkalien in mol/m³	≤ 2,0	≤ 1,5	< 0,02
Gesamthärte in °dH	≤ 11,2	≤ 8,4	< 0,11

VITOLIGNO 150-S

Bei den Richtwerten wird von folgenden Voraussetzungen ausgegangen:

- Die Summe des gesamten Füll- und Ergänzungswassers während der Lebensdauer der Anlage beträgt max. das 3-fache des Wasserinhalts der Heizungsanlage.
- Das spezifische Anlagenvolumen ist geringer als 20 Liter/kW Heizleistung. Bei Mehrkesselanlagen ist dabei die Leistung des kleinsten Heizkessels einzusetzen.
- Alle Maßnahmen zur Vermeidung wasserseitiger Korrosion nach VDI 2035 Blatt 2 sind getroffen worden.

Bei Heizungsanlagen mit folgenden Gegebenheiten ist das Füll- und Ergänzungswasser zu enthärten:

- Die Summe Erdalkalien des Füll- und Ergänzungswassers liegt über dem Richtwert.
- Höhere Füll- und Ergänzungswassermengen sind zu erwarten.
- Das spezifische Anlagenvolumen ist höher als 20 Liter/kW Heizleistung. Bei Mehrkesselanlagen ist dabei die Leistung des kleinsten Heizkessels einzusetzen.

Bei der Planung ist Folgendes zu beachten:

- Abschnittsweise sind Absperrventile einzubauen. Damit wird vermieden, dass bei jedem Reparaturfall oder jeder Anlagenerweiterung das gesamte Heizwasser abgelassen werden muss.
- Zur Erfassung der Füll- und Ergänzungswassermenge ist ein Wasserzähler einzubauen. Die eingefüllten Wassermengen und die Wasserhärte sind in die Serviceanleitungen der Heizkessel einzutragen.
- Bei Anlagen mit einem spezifischen Anlagenvolumen höher als 20 Liter/kW Heizleistung (Bei Mehrkesselanlagen ist dabei die Leistung des kleinsten Heizkessels einzusetzen.) sind die Anforderungen der nächsthöheren Gruppe der Gesamtheizleistung (gemäß Tabelle) anzuwenden. Bei gravierenden Überschreitungen (> 50 Liter/kW) ist auf Summe der Erdalkalien ≤ 0,02 mol/m³ zu enthärten.

Betriebshinweise:

- Anlage stufenweise bei hohem Heizwasserdurchfluss in Betrieb nehmen, beginnend mit der geringsten Leistung des Heizkessels. Damit wird eine örtliche Konzentration der Kalkablagerungen auf den Heizflächen des Wärmeerzeugers vermieden.
- Bei Mehrkesselanlagen sollen alle Heizkessel gleichzeitig in Betrieb genommen werden, damit die gesamte Kalkmenge nicht auf die Wärmeübertragungsfläche nur eines Heizkessels ausfällt.
- Bei Erweiterungs- und Reparaturarbeiten sind nur die unbedingt erforderlichen Netzabschnitte zu entleeren.
- Sind wasserseitige Maßnahmen erforderlich, muss schon die Erstbefüllung der Heizungsanlage zur Inbetriebnahme mit aufbereitetem Wasser erfolgen. Dies gilt auch für jede Neubefüllung z. B. nach Reparaturen oder Anlagenerweiterungen und für alle Ergänzungswassermengen.
- Filter, Schmutzfänger oder sonstige Abschlämm- oder Abscheidevorrichtungen im Heizwasserkreislauf nach Erst- oder Neuinstallation regelmäßig prüfen, reinigen und betätigen. Später kann dies nach Bedarf in Abhängigkeit der Wasseraufbereitung (z. B. Härtefällung) erfolgen.

Bei Beachtung dieser Hinweise wird die Bildung von Kalkablagerungen auf den Heizflächen minimiert.

Sind durch Nichtbeachtung der Richtlinie VDI 2035 schädliche Kalkablagerungen entstanden, ist eine Einschränkung der Lebensdauer der eingebauten Heizgeräte in den meisten Fällen bereits eingetreten. Kalkablagerungen entfernen kann eine Option zur Wiederherstellung der Betriebstauglichkeit sein. Diese Maßnahme ist durch den Viessmann Industrieservice oder einem Fachbetrieb auszuführen. Die Heizungsanlage ist vor Neuinbetriebnahme auf Schäden zu untersuchen. Um eine erneute übermäßige Bildung von Steinbelag zu vermeiden, müssen die fehlerhaften Betriebsparameter korrigiert werden.

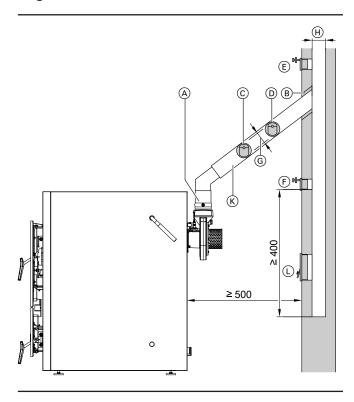
6.3 Frostschutz

Falls Vitoligno als alleiniger Wärmeerzeuger betrieben wird, muss eine Frostschutzeinrichtung installiert werden.

Dem Füllwasser kann ein speziell für Heizungsanlagen geeignetes Frostschutzmittel beigefügt werden. Die Eignung ist vom Hersteller des Frostschutzmittels nachzuweisen, da sonst Beschädigungen an Dichtungen und Membranen sowie Geräusche im Heizbetrieb auftreten können. Für hierdurch auftretende Schäden und Folgeschäden übernimmt Viessmann keine Haftung.

Es ist bei der Planung zu beachten, dass sich durch den Einsatz von Frostschutzmitteln die Leistung des Heizkessels verringert.

6.4 Abgasseitiger Anschluss


Schornstein

Ein vorschriftsmäßiger, der Nenn-Wärmeleistung des Heizkessels entsprechender Schornstein ist Voraussetzung für einen einwandfreien Betrieb. Es ist zu berücksichtigen, dass im unteren Wärmeleistungsbereich des Vitoligno niedrige Abgastemperaturen entstehen können (Gefahr der Taupunktunterschreitung).

Die Feuerstätten sind deshalb an hochwärmegedämmte Schornsteine (Wärmedurchlass-Widerstandsgruppe I nach DIN 18160 T1) anzuschließen oder es sind geeignete, allgemein bauaufsichtlich zugelassene feuchteunempfindliche Abgassysteme zu verwenden.

Der Schornstein muss eine glatte innere Oberfläche aufweisen und darf keine Risse und Querschnittsverengungen haben. Bei Schornsteinen mit einem Förderdruck (Schornsteinzug) über 0,15 mbar (15 Pa) muss eine Nebenluftvorrichtung (Zugbegrenzer) eingebaut werden

Abgasrohr

- © (G) Möglicher Einbauort Nebenluftvorrichtung (Zugbegrenzer)
 - Querschnitt Abgasrohr
- $\widetilde{\mathbb{H}}$ Querschnitt Schornstein
- K Wärmedämmung
- Zugbegrenzer zum Einbau in die Revisionstür am Schorn-

Hinweis

Abgasrohrstutzen ca. 10 mm in den Schornstein ragen lassen. Dies verhindert, dass Kondenswasser oder Regenwasser aus dem Schornstein in das Abgasrohr laufen kann.

Erläuterung zu den möglichen Einbauorten:

- © Sehr gute Regelung, Durchlüftungseffekt eingeschränkt bei langem Abgasrohr bzw. kleinem Querschnitt-Verhältnis Abgasrohr zu Schornstein, Einbauort ist nur im Extremfall zu wählen.
- Sehr guter Durchlüftungseffekt, gute Regelung, Einbauort ist nur im Extremfall zu wählen.
- Sehr guter Durchlüftungseffekt, gute Regelung, nachträgliche Montage nur bei gemauerten Schornsteinen. Bei mehrschaligen Konstruktionen Montage nur durch Fachbetrieb, Einbauort (E) ist (F) vorzuziehen.
- Regelung und Durchlüftung eingeschränkt. Wegen des geringen Rußanfalls ist die Montage an dieser Stelle bei Festbrennstoffkesseln und ausgekleideten Schornsteinen zu empfehlen.
- Kesselanschluss-Stück mit Kondensatfalle (für senkrechten (A) Einbau)
- (B) Flexibler Abgasrohreintritt

Nenn-Wärmeleistung	kW	17	23	30	34,5	45
Abgasrohr (lichte Weite)	mm	Ø 130	Ø 130	Ø150	Ø150	Ø150
Max. Abgasrohrlänge bis zum	mm			3000		
Schornstein						

Bei Anschluss des Abgasrohrs beachten:

- Abgasrohr zum Schornstein steigend (möglichst 45°) verlegen.
- Abgasrohr nicht zu weit in den Schornstein schieben.
- Komplette Abgasstrecke (einschl. Reinigungsöffnung) abgasdicht
- Abgasrohr nicht im Schornstein einmauern, sondern mit flexiblem Abgasrohreintritt anschließen, um Schallübertragungen des Abgasgebläses zu vermeiden. Reinigungsöffnung vorsehen.
- Wandfutter zur Adaptierung auf Abgassysteme anderer Hersteller siehe Vitoset Preisliste.
- Abgasrohr mit Wärmedämmung versehen.

6.5 Anschluss des Vitoligno 150-S und einem Öl-/Gas-Heizkessel an einen gemeinsamen Schornstein gemäß DIN 4759-1

Beim Anschluss an einen gemeinsamen Schornstein ist in Abstimmung mit dem zuständigen Bezirksschornsteinfegermeister eine sicherheitstechnische Einrichtung zur gegenseitigen Verriegelung entsprechend DIN 4759-1 vorzusehen. Diese Sicherheitsvorrichtung ist beim Vitoligno 150-S serienmäßig gegeben.

Falls der Vitoligno 150-S im Betrieb ist, bleibt der Brenner des Öl-/ Gas-Heizkessels ausgeschaltet. Falls die Fülltür oder Aschetür des Vitoligno 150-S geöffnet wird, unterbricht der Türkontaktschalter ebenfalls die Stromzufuhr des Brenners. Die Aschetür kann nur geöffnet werden, falls zuerst die Füllraumtür geöffnet wird. Sobald der Vitoligno 150-S in die Ausbrandphase kommt, wird der Öl-/Gas-Heizkessel mit Gebläsebrenner freigegeben und damit eine automatische Betriebsfortführung ermöglicht.

6.6 Hydraulische Einbindung

Anlagenbeispiele

Zum Erstellen der Heizungsanlage stehen Anlagenbeispiele mit hydraulischen und elektrischen Anschluss-Schemen mit Funktionsbeschreibung zur Verfügung.

Ausführliche Informationen zu Anlagenbeispielen: www.viessmann-schemes.com

Sicherheitstechnische Ausrüstung nach EN 12828

Nach EN 12828 werden u.a. folgende sicherheitstechnische Einrichtungen gefordert:

- Geschlossenes Ausdehnungsgefäß.
- Ein Sicherheitsventil an der höchsten Stelle des Heizkessels oder an einer damit verbundenen Leitung. Die Verbindungsleitung zwischen Heizkessel und Sicherheitsventil darf nicht absperrbar sein. In ihr dürfen keine Pumpen, Armaturen oder Verengungen vorhanden sein. Die Ausblaseleitung muss so ausgeführt sein, dass keine Drucksteigerungen möglich sind. Austretendes Heizwasser muss gefahrlos abgeführt werden. Die Mündung der Ausblaseleitung muss so angeordnet sein, dass aus dem Sicherheitsventil austretendes Wasser gefahrlos und beobachtbar abgeleitet wird.
- Thermometer und Manometer.
- Eine selbsttätig wirkende Einrichtung zur Wärmeabfuhr, die eine Überschreitung der höchstzulässigen Betriebstemperatur verhindert. Dazu ist an den eingebauten Wärmetauscher eine thermische Ablaufsicherung (als Zubehör lieferbar) anzuschließen.

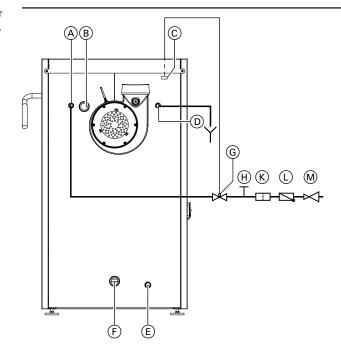
Wassermangelsicherung

Nach EN 12828 kann auf die erforderliche Wassermangelsicherung bei Heizkesseln bis 300 kW verzichtet werden, wenn sichergestellt ist, dass eine unzulässige Erwärmung bei Wassermangel nicht auftreten kann.

Dieser Heizkessel ist mit typengeprüften Temperaturreglern und Sicherheitstemperaturbegrenzern ausgerüstet. Durch Prüfungen ist nachgewiesen, dass bei eventuell auftretendem Wassermangel infolge Leckage an der Heizungsanlage und gleichzeitigem Ausbrennen des Brennstoffs in der Brennkammer, keine unzulässig hohe Erwärmung des Heizkessels und der Abgasanlage eintritt.

Allgemeine Planungshinweise

- Beim Anschluss mehrerer Heizkreise darf die Summe der abgenommenen Wärmeleistung die Nenn-Wärmeleistung des Heizkessels nicht überschreiten.
 - Um eine bessere Einregulierung der Anlage zu ermöglichen, können Strangregulierventile installiert werden. Durch mangelnde Wärmedämmung des Gebäudes (Neubau, noch nicht verputzt) liegt die errechnete und die tatsächliche Heizlast oft weit auseinander
- Rücklauftemperaturanhebung, Heizwasser-Pufferspeicher und witterungsgeführte Regelung der Heizkreise mit 3-Wege-Mischer sind bei allen Anlagen erforderlich.


Sicherheitswärmetauscher mit thermischer Ablaufsicherung

Der Sicherheitswärmetauscher ist werkseitig eingebaut und dient zur Absicherung gegen Überhitzung bei Zirkulationsunterbrechung (z. B. Stromausfall). Er darf nicht zur Trinkwassererwärmung verwendet werden. Die thermische Ablaufsicherung entsprechend EN 12828 mit freiem Ablauf an den Wärmetauscher anschließen.

Der Anschluss darf nicht von Hand absperrbar sein. Thermische Ablaufsicherung und Reinigungsöffnung müssen nach der Montage noch zugänglich sein.

Mindestanschlussdruck des Sicherheitswärmetauschers: 3 bis 6 bar (0,3 bis 0,6 MPa)

Zulässiger Betriebsdruck: 6 bar (0,6 MPa)

- Kaltwasserzulauf für thermische Ablaufsicherung R 1/2
- Kesselvorlauf G 11/2

- © Fühler für thermische Ablaufsicherung (nicht im Lieferumfang)
- (D) Warmwasseraustritt für thermische Ablaufsicherung R ½
- Entleerung R ¾
- (F) Kesselrücklauf G 11/2
- (G) Thermische Ablaufsicherung
- (H) Reinigungsöffnung
- (K) Trinkwasserfilter
- (L) Rückflussverhinderer
- (M) Druckminderventil

Heizbetrieb durch Heizwasser-Pufferspeicher

Grundsätzlich muss ein Heizwasser-Pufferspeicher eingesetzt werden

Dimensionierung Heizwasser-Pufferspeicher

Der Heizwasser-Pufferspeicher stellt eine schnelle Aufheizung am Morgen und eine ausreichende Wärmeabnahme unter allen Betriebsbedingungen sicher.

Der erforderliche Inhalt für einen Heizwasser-Pufferspeicher wird mit folgender Formel berechnet (Auslegungsgrundlage nach EN 303-5):

$$V_{sp} = 15 \text{ x } T_B \text{ x } Q_N \text{ x } \left(1 - 0.3 \text{ x } \frac{Q_H}{Q_{min}}\right)$$

V_{sp} Inhalt Heizwasser-Pufferspeicher in I

T_B Brenndauer bei

Nenn-Wärmeleistung in h

Q_N Nenn-Wärmeleistung des Heizkessels in kW

Q_H Heizlast des Gebäudes in kW

Q_{min} Kleinste Wärmeleistung des Heizkessels in kW

Hinweis

Nach den Vorgaben der 1. BlmSchV darf ein Speichervolumen von 55 l/kW Nenn-Wärmeleistung des Heizkessels bzw. 12 l je Liter Brennstoff-Füllraum nicht unterschritten werden.

Leistungsauslegung Scheitholzkessel

Bei monovalenten Anlagen sollte die Leistung des Scheitholzkessels doppelt so groß gewählt werden, wie die errechnete Heizlast des zu beheizenden Gebäudes. Der Wärmeüberschuss wird während des Abbrands im Heizwasser-Pufferspeicher aufgenommen und kann z. B. in den Nachtstunden vom Heizungssystem entnommen werden. Ein ständiges Nachlegen wird dadurch vermieden.

6.7 Bestimmungsgemäße Verwendung

Das Gerät darf bestimmungsgemäß nur in geschlossenen Heizungssystemen gemäß EN 12828 unter Berücksichtigung von CECS 215-2017 sowie der zugehörigen Montage-, Service- und Bedienungsanleitungen installiert und betrieben werden. Es ist ausschließlich für die Erwärmung von Heizwasser in Trinkwasserqualität vorgesehen.

Die bestimmungsgemäße Verwendung setzt voraus, dass eine ortsfeste Installation in Verbindung mit anlagenspezifisch zugelassenen Komponenten vorgenommen wurde.

Das Gerät ist ausschließlich für den häuslichen oder haushaltsähnlichen Gebrauch vorgesehen, auch nicht eingewiesene Personen können das Gerät sicher bedienen.

Die gewerbliche oder industrielle Verwendung zu einem anderen Zweck als zur Gebäudeheizung oder Trinkwassererwärmung gilt als nicht bestimmungsgemäß.

Darüber hinausgehende Verwendung ist vom Hersteller fallweise freizugeben.

Fehlgebrauch des Geräts bzw. unsachgemäße Bedienung (z. B. durch Öffnen des Geräts durch den Anlagenbetreiber) ist untersagt und führt zum Haftungsausschluss. Fehlgebrauch liegt auch vor, wenn Komponenten des Heizungssystems in ihrer bestimmungsgemäßen Funktion verändert werden (z. B. durch Verschließen der Abgas- und Zuluftwege).

Anhang

VITOLIGNO 150-S

7.1 Auslegung Ausdehnungsgefäß

Nach EN 12828 müssen Wasserheizungsanlagen mit einem Membran-Ausdehnungsgefäß ausgestattet sein. Die Größe des zu installierenden Ausdehnungsgefäßes ist abhängig von den Daten der Heizungsanlage und ist in jedem Fall zu überprüfen.

Anhang (Fortsetzung)

Schnellauswahltabelle zur Bestimmung der Gefäßgröße V_n

			_	_	
Sicherheits- ventil p _{sv}	bar MPa		V _n		
Vordruck	bar	1,0	1,5	1,8	Liter
	MPa	0,1	0,15	0,18	
Anlagenvolu-	Liter	220	_	_	25
men V _A		340	200	_	35
		510	320	200	50
		840	440	260	80
		1050	540	330	100
		1470	760	460	140
		2100	1090	660	200
		2630	1360	820	250
		3150	1630	990	300
		4200	2180	1320	400
		5250	2720	1650	500

Auswahlbeispiel

gegeben:

p_{sv} = 3 bar (0,3 MPa) (Ansprechdruck Sicherheitsventil)

H = 13 m (statische Höhe der Anlage)

Q = 30 kW (Nenn-Wärmeleistung Wärmeerzeuger)

v = 8,5 l/kW (spezifischer Wasserinhalt)

Plattenheizkörper 90/70 °C

V_{PH} = 2000 I (Volumen Pufferspeicher)

Der spezifische Wasserinhalt v wurde wie folgt festgelegt:

Radiatoren: 13,5 l/kW
Plattenheizkörper: 8,5 l/kW
Fußbodenheizung: 20 l/kW

berechnen:

 $V_A = Q \times v + V_{PH}$

 $V_A = 30 \text{ kW} \times 8.5 \text{ l/kW} + 2000 \text{ l}$

= 1255 I

Falls möglich, bei der Berechnung des Gasvordrucks einen Zuschlag von 0,2 bar wählen:

 $p_0 \ge H/10 + 0.2 \text{ bar}$

 $p_0 \ge (13/10 + 0.2 \text{ bar}) = 1.5 \text{ bar } (0.15 \text{ MPa})$

aus der Tabelle:

mit p_{sv} = 3 bar, p_0 = 1,5 bar, V_A = 1255 I

 $V_n = 250 I (für V_A max. 1360 I)$

gewählt:

2 x Membran-Druckausdehnungsgefäß N 250 (aus Preisliste Vitoset)

- Alle Angaben beziehen sich auf eine Vorlauftemperatur von 90 °C.
- Die Wasservorlage nach DIN 4807-2 wurde in den Tabellen berücksichtigt.

Empfehlungen:

- Sicherheitsventilansprechdruck ausreichend hoch wählen: $p_{sv} \ge p_0 + 1,5$ bar
- Wegen des erforderlichen Zulaufdrucks für die Umwälzpumpen auch bei Dachzentralen mindestens 0,3 bar über dem Vordruck einstellen: p₀ ≥ 1,5 bar
- Den wasserseitigen Füll- bzw. Anfangsdruck bei entlüfteter Anlage im kalten Zustand mindestens 0,3 bar über dem Vordruck einstellen: $p_F \ge p_0 + 0,3$ bar

Umrechnungswert für andere Vorlauftemperaturen als 90 °C

Vorlauftemperatur °C	50	55	60	65	70	75	80	85	90	95	100
Umrechnungsfaktor	3,03	2,50	2,13	1,82	1,59	1,39	1,24	1,11	1,00	0,90	0,82

Die nach obenstehenden Tabellen gefundene Gefäßgröße durch den Umrechnungswert dividieren.

Stichwortverzeichnis

Α	
Abgasrohr	
Abgasseitiger Anschluss	74
- Mindestabstände	72
Ausdehnungsgefäß	77
Auslieferungszustand	8
В	
Brennholz	
- Energieinhalt	
- Feuchte	
- Maßeinheiten	
D Dimensionierung Heizwasser-Pufferspeicher	77
Divicon	
Druckverlust	0.4
– Divicon	64
E	
Ecotronic 100	
Einbringung	11
F	
Frostschutz	74
н	
Heizkreis-Verteilung	60
Heizwasser-Pufferspeicher - Verwendbare Speicher (Übersicht)	16
Heizwasserseitiger Durchflusswiderstand	10
M Membran-Ausdehnungsgefäß	77
Wellistan-Austernangsgeras	
P	
Pufferspeicher Puffertemperatursensor	
Pumpenkennlinien	
_	
R Regelung	
Technische Angaben, Funktion	13
- Technische Daten	13
- ZubehörRestförderhöhe	
Restförderhöhen	02
– Divicon	67
s	
Scheitholz	4
Schornstein	74
Sicherheitstechnische Ausrüstung.	
Sicherheitswärmetauscher Speicher-Wassererwärmer	/6
- Verwendbare Speicher (Übersicht)	16
т	
Technische Angaben	
- Heizkessel	
Technische Angaben Regelung	13
Temperatursensor - Puffertemperatur	14
Thermische Ablaufsicherung	
V	
V Verbrennung von Holz, Grundlagen	4
Verwendbare Heizwasser-Pufferspeicher	16
Verwendbare Speicher-Wassererwärmer	16

vv	
Wandabstände	72
Wasserbeschaffenheit, Richtwerte für die	73
Z	
Zubehör	
– Zum Heizkessel	58
- Zur Regelung	13
- Zur Regelung von Heizkreisen und Trinkwassererwärmung	15

5784189

Technische Änderungen vorbehalten!

Viessmann Ges.m.b.H. A-4641 Steinhaus bei Wels Telefon: 07242 62381-110 Telefax: 07242 62381-440 www.viessmann.at Viessmann Climate Solutions SE 35108 Allendorf Telefon: 06452 70-0 Telefax: 06452 70-2780

www.viessmann.de